Question 6.1: Determining Estimated S-N Diagrams for Ferrous Materials Pro...

Determining Estimated S-N Diagrams for Ferrous Materials

Problem    Create an estimated S-N diagram for a steel bar and define its equations. How many cycles of life can be expected if the alternating stress is 100 MPa?

Given    The S_{ut} has been tested at 600 MPa. The bar is 150 mm square and has a hot-rolled finish. The operating temperature is 500°C maximum. The loading will be fully reversed bending.

Assumptions    Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1    Since no endurance-limit or fatigue strength information is given, we will estimate S_e{ }^{\prime} based on the ultimate strength using equation 6.5a (p. 330).

\text { steels : } \quad\left\{\begin{array}{ll} S_{e^{\prime}} \cong 0.5 S_{u t} & \text { for } S_{u t}<200  kpsi (1400  MPa ) \\ S_{e^{\prime}} \cong 100  kpsi (700  MPa ) & \text { for } S_{u t} \geq 200  kpsi (1400  MPa ) \end{array}\right\}      (6.5a)

S_{e^{\prime}} \cong 0.5 S_{u t}=0.5(600)=300    MPa      (a)

2    The loading is bending so the load factor from equation 6.7a is

\begin{array}{ll} \text { bending: } & C_{\text {load }}=1 \\ \text { axial loading: } & C_{\text {load }}=0.70 \end{array}       (6.7a)

C_{load} = 1.0           (b)

3    The part is larger than the test specimen and is not round, so an equivalent diameter based on its 95% stressed area (A_{95} ) must be determined and used to find the size factor. For a rectangular section in nonrotating bending loading, the A_{95 } area is defined in Figure 6- 25c (p. 332) and the equivalent diameter is found from equation 6.7d (p. 331):

d_{\text {equiv }}=\sqrt{\frac{A_{95}}{0.0766}}       (6.7d)

\begin{aligned} A_{95} &=0.05 b h=0.05(150)(150)=1125  mm ^2 \\ d_{\text {equiv }} &=\sqrt{\frac{A_{95}}{0.0766}}=\sqrt{\frac{1125  mm ^2}{0.0766}}=121.2  mm \end{aligned}        (c)

and the size factor is found for this equivalent diameter from equation 6.7b (p. 331):

\text {for}   d \leq 0.3  \text {in}  (8  mm) : \quad C_{\text {size }}=1 \\ \text {for}   0.3  \text {in} \lt d \leq 10  \text {in} : \quad C_{\text {size }}=0.869 d^{-0.097} \\ \text {for}  8  mm \lt d \leq 250  mm : \quad C_{\text {size }}=1.189 d^{-0.097}    (6.7b)

C_{\text {size }}=1.189(121.2)^{-0.097}=0.747       (d)

4    The surface factor is found from equation 6.7e (p. 333) and the data in Table 6-3 for the specified hot-rolled finish.

C_{\text {surf }} \equiv A\left(S_{\text {ut }}\right)^b \quad \text { if } C_{\text {surf }}>1.0 \text {, set } C_{\text {surf }}=1.0      (6.7e)

C_{\text {surf }}=A S_{u t}^b=57.7(600)^{-0.718}=0.584      (e)

5    The temperature factor is found from equation 6.7f (p. 335):

\text {for}  T \leq 450^\circ C (840^\circ F) : \quad C_{\text {temp }}=1\\ \text {for}  450^\circ C \lt T \leq 550^\circ C : \quad C_{\text {temp }}=1-0.0058(T-450)\\ \text {for}  840^\circ F \lt T\leq 1020^\circ F : C_{\text {temp }}=1-0.0032(T-840)     (6.7f)

C_{\text {temp }}=1-0.0058(T-450)=1-0.0058(500-450)=0.71       (f)

6    The reliability factor is taken from Table 6-4 (p. 335) for the desired 99.9% and is

C_{\text {reliab }}=0.753      (g)

7    The corrected endurance limit S_{e} can now be calculated from equation 6.6 (p. 330):

\begin{array}{l} S_e=C_{\text {load }} C_{\text {size }} C_{\text {surf }} C_{\text {temp }} C_{\text {reliab }} S_{e^{\prime}} \\ S_f=C_{\text {load }} C_{\text {size }} C_{\text {surf }} C_{\text {temp }} C_{\text {reliab }} S_f^{\prime} \end{array}     (6.6)

\begin{aligned} S_e &=C_{\text {load }} C_{\text {size }} C_{\text {surf }} C_{\text {temp }} C_{\text {reliab }} S_{e^{\prime}} \\ &=1.0(0.747)(0.584)(0.71)(0.753)(300) \\ S_e &=70  MPa \end{aligned}     (h)

8    To create the S-N diagram, we also need a number for the estimated strength S_{m} at 10³ cycles based on equation 6.9 (p. 337) for bending loading.

\text {bending :} \quad \quad S_m=0.9 S_{u t} \\ \text {axial loading :} \quad \quad S_m=0.75 S_{u t}     (6.9)

S_m=0.90 S_{u t}=0.90(600)=540  MPa       (i)

9    The estimated S-N diagram is shown in Figure 6-34 with the above values of S_{m} and S_{e}. The expressions of the two lines are found from equations 6.10a through 6.10c (p. 338) assuming that S_{e} begins at 10^{6} cycles.

S(N)=a N^b     (6.10a)

\begin{array}{c} b=-\frac{1}{3} \log \left\lgroup\frac{S_m}{S_e}\right\rgroup =-\frac{1}{3} \log \left\lgroup\frac{540}{70}\right\rgroup =-0.295765 \\ \log (a)=\log \left(S_m\right)-3 b=\log [540]-3(-0.295765): \quad a=4165.707 \end{array}        (j)

\begin{array}{ll} S(N)=a  N^b=4165.707  N^{-0.295765}  MPa & 10^3 \leq N \leq 10^6 \\ S(N)=S_e=70  MPa & N>10^6 \end{array}        (k)

10    The number of cycles of life for any alternating stress level can now be found from equations (k). For the stated stress level of 100 MPa, we get

\begin{aligned} 100 &=4165.707  N^{-0.295765} \quad 10^3 \leq  N \leq 10^6 \\ \log 100 &=\log 4165.707-0.295765 \log  N \\ 2 &=3.619689-0.295765 \log  N \\ \log  N &=\frac{2-3.619689}{-0.295765}=5.476270 \\ N &=10^{5.476270}=3.0 E 5 \text { cycles } \end{aligned}        (l)

Figure 6-34 shows the intersection of the alternating stress line with the failure line at N = 3E5 cycles.

11    The files EX06-01 are on the CD-ROM.

 

Table 6-3          Coefficients for Surface-Factor Equation 6.7e   Source: Shigley and Mischke, Mechanical Engineering Design, 5th ed., McGrawHill, New York, 1989, p. 283 with permission
For S_{ut} in MPa use For S_{ut} in kpsi

(not psi)

use

Surface Finish A b A b
Ground 1.58 –0.085 1.34 –0.085
Machined or cold-rolled 4.51 –0.265 2.7 –0.265
Hot-rolled 57.7 –0.718 14.4 –0.718
As-forged 272 –0.995 39.9 –0.995

 

Table 6-4
Reliability Factors
for S_{d} = 0.08  \mu
Reliability % C_{reliab}
50 1.000
90 0.897
95 0.868
99 0.814
99.9 0.753
99.99 0.702
99.999 0.659
99.9999 0.620
F6-25
F6-34

Related Answered Questions