Question 4.8: Direct tensile stresses of 120 MN/m² and 70 MN/m² act on a b...
Direct tensile stresses of 120 MN/m² and 70 MN/m² act on a body on mutually perpendicular planes. What is the magnitude of shearing stress that can be applied so that major principal stress at the point does not exceed 135 MN/m²? Determine the value of major principal stress and the maximum shear stress.
Learn more on how we answer questions.
Let us refer to Figure 4.18(a) of the previous problem in which we have
\sigma_{x x}=+120 MN / m ^2 \quad \text { and } \quad \sigma_{y y}=+70 MN / m ^2
Let \tau_{x y} be the shear stress acting on the body. Therefore,
\begin{aligned} \sigma_1 & =\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)+\sqrt{\left\lgroup \frac{\sigma_{x x}-\sigma_{y y}}{2} \right\rgroup^2+\tau_{x y}^2} \\ 135 & =0.5(120+70)+\sqrt{\{0.5(120-70)\}^2+\tau_{x y}^2} \end{aligned}
This implies
\tau_{x y}=\pm 31.22 MPa \Rightarrow\left|\tau_{x y}\right|=31.22 MN / m ^2
Let \sigma_2 be the other principal stress, then
\sigma_1+\sigma_2=\sigma_{x x}+\sigma_{y y}=120+70=190
or \sigma_2=190-135=55 MPa
If \tau_{\max } be the maximum shear stress, then
\tau_{\max }=\sqrt{\left\lgroup \frac{\sigma_{x x}-\sigma_{y y}}{2} \right\rgroup^2+\tau_{x y}^2}
or \tau_{\max }=\sigma_1-\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)=[135-0.5(120+70)]=40 MPa
