Question 9.16: Draw S.F.D. and B.M.D. of overhanging beam as shown in the F...

Draw S.F.D. and B.M.D. of overhanging beam as shown in the Fig. 9.24.

Screenshot 2022-08-09 232903
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\Sigma Y =0, R_{B} + R_{C}= 6 + (15 \times 2)

=36

\sum M_{B}=0,

R_{C} \times 4+6 \times 2+10=30 \times 5

R_{C}= 32 kN
R_{B} = 4 kN

Shear Force Diagram:

(S F)_{X_{1} X_{1}^{1}}=+15 \times x_{1}

(S F)_{D}=0

(S F)_{C}=15 \times 2 = 30  kN

(S F) x_{2} x_{2}^{1}=(15 \times 2)-R_{C}

= 30 – 32 = −2 kN

(S F)_{X_{2} X_{2}^{1}}=-2 kN \quad(S F)_{C}=(S F)_{E}=-2  kN

(S F)_{X_{3} X_{3}^{1}}=(15 \times 2)-R_{C}

(S F)_{E}=(S F)_{B}=-2  kN

(S F)_{X_{4} X_{4}^{1}}=(15 \times 2)-R_{C}-R_{B}

= 30 – 32 – 4
= −6 kN

( SF )_{ B }=( SF )_{ A }=-6  kN

Bending Moment Diagram:

(B M)_{X_{1} X_{1}^{1}}=-15 x_{1} \times \frac{x_{1}}{2}

(B M)_{D}=0

(B M)_{C}=-15 \times 2 \times \frac{\not 2}{\not 2}

= −30 kNm

(B M)_{X_{2} X_{2}^{1}}=-(15 \times 2)\left(x_{2}-1\right)+R_{C}\left(x_{2}-2\right)

=-30\left( x _{2}-1\right)+32\left( x _{2}-2\right)

(B M)_{C}=-30(2-1)+0=-30  kNm

(B M)_{E}=-30(4-1)+32(4-2)

= −26 kNm

(B M)_{X_{3} X_{3}^{1}}=-30\left(x_{3}-1\right)+32\left(x_{3}-2\right)+10

(B M)_{E}=-30(4-1)+32(4-2)+10

= −16 kNm

(B M)_{B}=-30(6-1)+32(6-2)+10

(B M)_{B}=−12  kNm

(B M)_{X_{4} X_{4}^{1}}=-30\left(x_{4}-1\right)+32\left(x_{4}-2\right)+10+4\left(x_{4}-6\right)

(B M)_{B}=−12  kNm

(B M)_{A}=-30(8-1)+32(8-2)+10+4(8-6)

= 0

Related Answered Questions

Question: 9.1

Verified Answer:

First, support reactions are to be determined. Con...
Question: 9.19

Verified Answer:

hTe figure can be modified about point B where Cou...
Question: 9.18

Verified Answer:

\Sigma Y =0, R_{A} + R_{B}=150 + 50...
Question: 9.13

Verified Answer:

Shear Force Diagram: (S F)_{X_{1} X_{1}^{1}...