Question 7.2: ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID The elect...

ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID    The electronic polarizability of the Ar atom is 1.7 \times  10^{−40}  F  m^{2}. What is the static dielectric constant of solid Ar (below 84 K) if its density is 1.8  g  cm^{−3}?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To calculate \varepsilon_{r} we need the number of Ar atoms per unit volume N from the density d. If M_{at} = 39.95 is the relative atomic mass of Ar and N_{A} is Avogadro’s number, then

N=\frac{N_{A} d}{M_{ at }}=\frac{\left(6.02 \times 10^{23}  mol ^{-1}\right)\left(1.8  g  cm ^{-3}\right)}{\left(39.95  g  mol ^{-1}\right)}=2.71 \times 10^{22}  cm ^{-3}

with N=2.71 \times 10^{28}  m ^{-3}  \text { and }  \alpha_{e}=1.7 \times 10^{-40}  F  m ^{2} , we have

\varepsilon_{r}=1+\frac{N \alpha_{e}}{\varepsilon_{o}}=1+\frac{\left(2.71 \times 10^{28}\right)\left(1.7 \times 10^{-40}\right)}{\left(8.85 \times 10^{-12}\right)}=1.52

If we use the Clausius–Mossotti equation, we get

\varepsilon_{r}=\frac{1+\frac{2 N \alpha_{e}}{3 \varepsilon_{o}}}{1-\frac{N \alpha_{e}}{3 \varepsilon_{o}}}=1.63

The two values are different by about 7 percent. The simple relationship in Equation 7.14 underestimates the relative permittivity.

\varepsilon_{r}=1+\frac{N \alpha_{e}}{\varepsilon_{o}}         [7.14]

Related Answered Questions