Question 30.2: Estimate the distance a spherical drop of liquid water, orig...

Estimate the distance a spherical drop of liquid water, originally 1 \mathrm{~mm} in diameter, must fall in quiet, dry air at 323 \mathrm{~K} in order to reduce its volume by 50 \%. Assume that the velocity of the drop is its terminal velocity evaluated at its mean diameter and that the water temperature remains at 293 \mathrm{~K}. Evaluate all gas properties at the average gas film temperature of 308 \mathrm{~K}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The physical system requires a combined analysis of momentum and mass transport. The liquid water droplet is the source for mass transfer, the surrounding air serves as an infinite sink, and water vapor (species A ) is the transferring species. The rate of evaporation is sufficiently small so that the water droplet is considered isothermal at 293 \mathrm{~K}; otherwise, a combined analysis of momentum, mass, and heat transport would be required! By considering a force balance on a spherical particle falling in a fluid medium, we can show that the terminal velocity of the particle is

v_{o}=\sqrt{\frac{4 d_{p}\left(\rho_{w}-p_{\mathrm{air}}\right) g}{3 C_{D} \rho_{\mathrm{air}}}}

where d_{p} is the diameter of the particle, \rho_{w} is the density of the water droplet, \rho_{\text {air }} is the density of the surrounding fluid (air), g is the acceleration due to gravity, and C_{D} is the drag coefficient, which is a function of the Reynolds number of the spherical particle as illustrated in Figure 12.4. The arithmetic mean droplet diameter is evaluated by

\begin{aligned} \bar{d}_{p} & =\frac{d_{p \mid t_{1}}+d_{p \mid t_{2}}}{2}=\frac{d_{p \mid t_{1}}+\left(\frac{1}{2}\right)^{1 / 3} \cdot d_{p \mid t_{1}}}{2} \\ & =0.897 d_{p \mid t_{1}}=(0.897)\left(1 \times 10^{-3} \mathrm{~m}\right)=8.97 \times 10^{-4} \mathrm{~m} \end{aligned}

Hence, the arithmetic mean radius is equal to 4.48 \times 10^{-4} \mathrm{~m}. At 293 \mathrm{~K}, the density of the water droplet \left(\rho_{w}\right) is 9.95 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}. At 308 \mathrm{~K}, the density of the air is 1.14 \mathrm{~kg} / \mathrm{m}^{3} and the viscosity of air is 1.91 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{s}. Substitution of these values into the terminal velocity equation yields

v_{o}=\sqrt{\frac{(4)\left(8.97 \times 10^{-4} \mathrm{~m}\right)\left(9.95 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}-1.14 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(3)\left(1.14 \mathrm{~kg} / \mathrm{m}^{3}\right) C_{D}}}=\sqrt{\frac{10.22 \mathrm{~m}^{2} / \mathrm{s}^{2}}{C_{D}}}

By trial and error, guess a value for ν_{o}, calculate a Reynolds number, and read C_{D} from Figure 12.4. Then, check the guessed value of ν_{o} by the above equation. Guess ν_{o}=3.62 \mathrm{~m} / \mathrm{s}. The Reynolds number is

\operatorname{Re}=\frac{d_{p} v_{o} \rho_{\text {air }}}{v_{\text {air }}}=\frac{\left(8.97 \times 10^{-4} \mathrm{~m}\right)(3.62 \mathrm{~m} / \mathrm{s})\left(1.14 \mathrm{~kg} / \mathrm{m}^{3}\right)}{1.19 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{s}\left(\frac{\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}}{\mathrm{Pa} \cdot \mathrm{s}}\right)}=194

and Figure 12.4, C_{D}=0.78. Now recalculate v_{o}

v_{o}=\sqrt{\frac{10.22 \mathrm{~m}^{2} / \mathrm{s}^{2}}{C_{D}}}=\sqrt{\frac{10.22 \mathrm{~m}^{2} / \mathrm{s}^{2}}{0.78}}=3.62 \mathrm{~m} / \mathrm{s}

Therefore, the guessed value for ν_{o} is correct. The Schmidt number must now be calculated. From Appendix J.1, the gas diffusivity \left(D_{A B}\right) for water vapor in air at 298 \mathrm{~K} is 2.60 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, which is corrected to the desired temperature by

D_{A B}=\left(2.60 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)\left(\frac{308 \mathrm{~K}}{298 \mathrm{~K}}\right)^{3 / 2}=2.73 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}

The Schmidt number is

\mathrm{Sc}=\frac{\mu_{\mathrm{air}}}{\rho_{\mathrm{air}} D_{A B}}=\frac{\left(1.91 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{s}\right)\left(\frac{\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}}{\mathrm{Pa} \cdot \mathrm{s}}\right)}{\left(1.14 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.273 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)}=0.61

The Fröessling equation (30-9)

\mathrm{Sh}={\frac{k_{\mathrm{c}}D}{D_{A B}}}=2+0.552\,\mathrm{Re}^{1/2}\,\mathrm{Sc}^{1/3}        (30-9)

can now be used to evaluate the mass-transfer coefficient for transfer of water vapor from the surface of the droplet to the surrounding air

\frac{k_{c} d_{p}}{D_{A B}}=2+0.552 \operatorname{Re}^{1 / 2} \mathrm{Sc}^{1 / 3}

or

\begin{aligned} k_{c} & =\frac{D_{A B}}{d_{p}}\left(2+0.552 \mathrm{Re}^{1 / 2} \mathrm{Sc}^{1 / 3}\right) \\ & =\frac{\left(0.273 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)}{8.97 \times 10^{-4} \mathrm{~m}}\left(2.0+0.552(194)^{1 / 2}(0.61)^{1 / 3}\right)=0.276 \mathrm{~m} / \mathrm{s} \end{aligned}

The average rate of water evaporation from the droplet is

W_{A}=4 \pi \bar{r}_{p}^{2} N_{A}=4 \pi \bar{r}_{p}^{2} k_{c}\left(c_{A s}-c_{A \infty}\right)

The dry-air concentration, c_{A \infty}, is zero, and the surrounding is assumed to be an infinite sink for mass transfer. The surface concentration is evaluated from the vapor pressure of water at 293 \mathrm{~K}

c_{A s}=\frac{P_{A}}{R T}=\frac{2.33 \times 10^{3} \mathrm{~Pa}}{\left(8.314 \frac{\mathrm{Pa} \cdot \mathrm{m}^{3}}{\mathrm{~mol} \cdot \mathrm{K}}\right)(293 \mathrm{~K})}=0.956 \frac{\mathrm{mol}}{\mathrm{m}^{3}}

When we substitute the known values into the rate of evaporation equation, we obtain

W_{A}=4 \pi\left(4.48 \times 10^{-4} \mathrm{~m}\right)^{2}(0.276 \mathrm{~m} / \mathrm{s})\left(0.956 \mathrm{~mol} / \mathrm{m}^{3}-0\right)=6.65 \times 10^{-7} \mathrm{~mol} / \mathrm{s}

or 1.2 \times 10^{-8} \mathrm{~kg} / \mathrm{s} on a mass basis. The amount of water evaporated is

\begin{aligned} m_{A} & =\rho_{w} \Delta V=\rho_{w}\left(V_{t, 1}-V_{t, 2}\right)=\rho_{w}\left(V_{t, 1}-0.5 V_{t, 1}\right)=\frac{\rho_{w} V_{t, 1}}{2} \\ & =\frac{\rho_{w}}{2} \frac{4 \pi}{3} r_{p}^{-3}=\frac{4 \pi}{6}\left(9.95 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(4.48 \times 10^{-4} \mathrm{~m}\right)^{3}=1.87 \times 10^{-7} \mathrm{~kg} \end{aligned}

The time necessary to reduce the volume by 50 \% is

t=\frac{m_{A}}{W_{A}}=\frac{1.87 \times 10^{-7} \mathrm{~kg}}{1.20 \times 10^{-8} \mathrm{~kg} / \mathrm{s}}=15.6 \mathrm{~s}

and the distance of the fall is equal to v_{o} t or 56.5 \mathrm{~m}.

12.4

Related Answered Questions