Question 6.6: Estimate V, H^R, and S^R for an equimolar mixture of carbon ...

Estimate V,HR,andSR H^R, and S^R or an equimolar mixture of carbon dioxide(1) and propane(2) at 450 K and 140 bar by the Lee/Kesler correlations.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The pseudocritical parameters are found by Eqs. (6.78) through (6.80) with critical constants from Table B.1 of App. B:

ωiyiωi\omega \equiv \sum\limits_{i}{y_{i}\omega _{i } }      (6.78)

PpciyiPciP_{pc} \equiv \sum\limits_{i}{y_{i} P_{c_{i} } }     (6.80)

ω=y1ω1+y2ω2=(0.5)(0.224)+(0.5)(0.152)=0.188 ω = y_1 ω_1 + y_2 ω_2 = ( 0.5 ) ( 0.224 ) + ( 0.5 ) ( 0.152 ) = 0.188

Tpc=y1Tc1+y2Tc2=(0.5)(304.2)+(0.5)(369.8)=337.0K T_{pc } = y _1 T_{c 1} + y _2 T_{c 2} = ( 0.5 ) ( 304.2 ) + ( 0.5 ) ( 369.8 ) = 337.0 K

Ppc=y1Pc1+y2Pc2=(0.5)(73.83)+(0.5)(42.48)=58.15 bar P pc = y_1 P c_1 + y_2 P c _2 = ( 0.5 ) ( 73.83 ) + ( 0.5 ) ( 42.48 ) = 58.15  bar

Then,

Tpr=450337.0=1.335     Ppr=14058.15=2041T_{pr} =\frac{450}{337.0} = 1.335           P_{pr} = \frac{140}{58.15} =2041

Values of Z0andZ1Z^0 and Z^1 from Tables D.3 and D.4 at these reduced conditions are:

Z0=0.697andZ1=0.205Z^0 = 0.697 and Z^1 = 0.205

By Eq. (3.57),

Z=1+BPRT=1+(BPcRTc)PrTR=1+B^PrTRZ = 1 + \frac{BP}{RT} = 1+ \left(\frac{BP_{c} }{R T_{c} } \right) \frac{P_{r} }{T_R} = 1 + \widehat{B} \frac{P_{r} }{T_R}      (3.57)

  Z=Z0+ωZ1=0.697+(0.188)(0.205)=0.736   Z = Z^0 + ω Z^1 = 0.697 + ( 0.188 ) ( 0.205 ) = 0.736

Thus,

  V=ZRTP=(0.736)(83.14)(450)140=196.7cm3mol1   V = \frac{ZRT}{P} = \frac{( 0.736 ) ( 83.14 ) ( 450 )}{140} = 196.7 cm^3 ⋅mol^−1

Similarly, from Tables D.7 and D.8, with substitution into Eq. (6.66):

HrRTc=(HR)0Rtc+ω(HR)1Rtc\frac{H^{r} }{RT_c} = \frac{( H^{R} )^{0} }{R t_c} + ω \frac{( H^{R} )^{1} }{R t_c}      (6.66)

 (HRRTpc)0=1.730(HRRTpc)1=0.169  (\frac{H^{R} }{RT_{pc} } )^{0} = − 1.730 (\frac{H^{R} }{RT_{pc} } )^{1} = − 0.169

HRRTpc==1.730+(0.188)(0.169)=1.762  \frac{H^{R} }{R T_{pc} } = = − 1.730 + ( 0.188 ) ( − 0.169 ) = − 1.762  

and

HR=(8.314)(337.0)(1.762)=4937 Jmol1  H^R = ( 8.314 ) ( 337.0 ) ( −1.762 ) = − 4937  J ⋅mol^−1 

From Tables D.11 and D.12 and substitution into Eq. (6.67),

SrR=0.967+(0.188)(0.330)=1.029  \frac{S^{r} }{R} = − 0.967 + ( 0.188 ) ( − 0.330 ) = − 1.029  

and

SR=(8.314)(1.029)=8.56Jmol1K1 S^R = ( 8.314 ) ( − 1.029 ) = − 8.56 J ⋅mol^−1 ⋅K^−1

Related Answered Questions