The pseudocritical parameters are found by Eqs. (6.78) through (6.80) with critical constants from Table B.1 of App. B:
ω ≡ ∑ i y i ω i \omega \equiv \sum\limits_{i}{y_{i}\omega _{i } } ω ≡ i ∑ y i ω i (6.78)
P p c ≡ ∑ i y i P c i P_{pc} \equiv \sum\limits_{i}{y_{i} P_{c_{i} } } P p c ≡ i ∑ y i P c i (6.80)
ω = y 1 ω 1 + y 2 ω 2 = ( 0.5 ) ( 0.224 ) + ( 0.5 ) ( 0.152 ) = 0.188 ω = y_1 ω_1 + y_2 ω_2 = ( 0.5 ) ( 0.224 ) + ( 0.5 ) ( 0.152 ) = 0.188 ω = y 1 ω 1 + y 2 ω 2 = ( 0 . 5 ) ( 0 . 2 2 4 ) + ( 0 . 5 ) ( 0 . 1 5 2 ) = 0 . 1 8 8
T p c = y 1 T c 1 + y 2 T c 2 = ( 0.5 ) ( 304.2 ) + ( 0.5 ) ( 369.8 ) = 337.0 K T_{pc } = y _1 T_{c 1} + y _2 T_{c 2} = ( 0.5 ) ( 304.2 ) + ( 0.5 ) ( 369.8 ) = 337.0 K T p c = y 1 T c 1 + y 2 T c 2 = ( 0 . 5 ) ( 3 0 4 . 2 ) + ( 0 . 5 ) ( 3 6 9 . 8 ) = 3 3 7 . 0 K
P p c = y 1 P c 1 + y 2 P c 2 = ( 0.5 ) ( 73.83 ) + ( 0.5 ) ( 42.48 ) = 58.15 b a r P pc = y_1 P c_1 + y_2 P c _2 = ( 0.5 ) ( 73.83 ) + ( 0.5 ) ( 42.48 ) = 58.15 bar P p c = y 1 P c 1 + y 2 P c 2 = ( 0 . 5 ) ( 7 3 . 8 3 ) + ( 0 . 5 ) ( 4 2 . 4 8 ) = 5 8 . 1 5 b a r
Then,
T p r = 450 337.0 = 1.335 P p r = 140 58.15 = 2041 T_{pr} =\frac{450}{337.0} = 1.335 P_{pr} = \frac{140}{58.15} =2041 T p r = 3 3 7 . 0 4 5 0 = 1 . 3 3 5 P p r = 5 8 . 1 5 1 4 0 = 2 0 4 1
Values of Z 0 a n d Z 1 Z^0 and Z^1 Z 0 a n d Z 1 from Tables D.3 and D.4 at these reduced conditions are:
Z 0 = 0.697 a n d Z 1 = 0.205 Z^0 = 0.697 and Z^1 = 0.205 Z 0 = 0 . 6 9 7 a n d Z 1 = 0 . 2 0 5
By Eq. (3.57),
Z = 1 + B P R T = 1 + ( B P c R T c ) P r T R = 1 + B ^ P r T R Z = 1 + \frac{BP}{RT} = 1+ \left(\frac{BP_{c} }{R T_{c} } \right) \frac{P_{r} }{T_R} = 1 + \widehat{B} \frac{P_{r} }{T_R} Z = 1 + R T B P = 1 + ( R T c B P c ) T R P r = 1 + B T R P r (3.57)
Z = Z 0 + ω Z 1 = 0.697 + ( 0.188 ) ( 0.205 ) = 0.736 Z = Z^0 + ω Z^1 = 0.697 + ( 0.188 ) ( 0.205 ) = 0.736 Z = Z 0 + ω Z 1 = 0 . 6 9 7 + ( 0 . 1 8 8 ) ( 0 . 2 0 5 ) = 0 . 7 3 6
Thus,
V = Z R T P = ( 0.736 ) ( 83.14 ) ( 450 ) 140 = 196.7 c m 3 ⋅ m o l − 1 V = \frac{ZRT}{P} = \frac{( 0.736 ) ( 83.14 ) ( 450 )}{140} = 196.7 cm^3 ⋅mol^−1 V = P Z R T = 1 4 0 ( 0 . 7 3 6 ) ( 8 3 . 1 4 ) ( 4 5 0 ) = 1 9 6 . 7 c m 3 ⋅ m o l − 1
Similarly, from Tables D.7 and D.8 , with substitution into Eq. (6.66):
H r R T c = ( H R ) 0 R t c + ω ( H R ) 1 R t c \frac{H^{r} }{RT_c} = \frac{( H^{R} )^{0} }{R t_c} + ω \frac{( H^{R} )^{1} }{R t_c} R T c H r = R t c ( H R ) 0 + ω R t c ( H R ) 1 (6.66)
( H R R T p c ) 0 = − 1.730 ( H R R T p c ) 1 = − 0.169 (\frac{H^{R} }{RT_{pc} } )^{0} = − 1.730 (\frac{H^{R} }{RT_{pc} } )^{1} = − 0.169 ( R T p c H R ) 0 = − 1 . 7 3 0 ( R T p c H R ) 1 = − 0 . 1 6 9
H R R T p c = = − 1.730 + ( 0.188 ) ( − 0.169 ) = − 1.762 \frac{H^{R} }{R T_{pc} } = = − 1.730 + ( 0.188 ) ( − 0.169 ) = − 1.762 R T p c H R = = − 1 . 7 3 0 + ( 0 . 1 8 8 ) ( − 0 . 1 6 9 ) = − 1 . 7 6 2
and
H R = ( 8.314 ) ( 337.0 ) ( − 1.762 ) = − 4937 J ⋅ m o l − 1 H^R = ( 8.314 ) ( 337.0 ) ( −1.762 ) = − 4937 J ⋅mol^−1 H R = ( 8 . 3 1 4 ) ( 3 3 7 . 0 ) ( − 1 . 7 6 2 ) = − 4 9 3 7 J ⋅ m o l − 1
From Tables D.11 and D.12 and substitution into Eq. (6.67),
S r R = − 0.967 + ( 0.188 ) ( − 0.330 ) = − 1.029 \frac{S^{r} }{R} = − 0.967 + ( 0.188 ) ( − 0.330 ) = − 1.029 R S r = − 0 . 9 6 7 + ( 0 . 1 8 8 ) ( − 0 . 3 3 0 ) = − 1 . 0 2 9
and
S R = ( 8.314 ) ( − 1.029 ) = − 8.56 J ⋅ m o l − 1 ⋅ K − 1 S^R = ( 8.314 ) ( − 1.029 ) = − 8.56 J ⋅mol^−1 ⋅K^−1 S R = ( 8 . 3 1 4 ) ( − 1 . 0 2 9 ) = − 8 . 5 6 J ⋅ m o l − 1 ⋅ K − 1