Question 7.36: Evaluate 1/2πi ∫a-i∞^a+i∞ e^zt/√z + 1 dz where a and t are a...

Evaluate \frac{1}{2 \pi i} \int\limits_{a-i \infty}^{a+i \infty} \frac{e^{z t}}{\sqrt{z+1}} d z where a and t are any positive constants.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The integrand has a branch point at z=-1. We shall take as a branch line that part of the real axis to the left of z=-1. Since we cannot cross this branch line, let us consider

\oint\limits_{C} \frac{e^{z t}}{\sqrt{z+1}} d z

where C is the contour A B D E F G H J K A shown in Fig. 7-15. In this figure, E F and H J actually lie on the real axis but have been shown separated for visual purposes. Also, F G H is a circle of radius \epsilon while B D E and J K A represent arcs of a circle of radius R.

Since e^{z t} / \sqrt{z+1} is analytic inside and on C, we have by Cauchy’s theorem

\oint\limits_{C} \frac{e^{z t}}{\sqrt{z+1}} d z=0     (1)

Omitting the integrand, this can be written

\int\limits_{A B}+\int\limits_{B D E}+\int\limits_{E F}+\int\limits_{F G H}+\int\limits_{H J}+\int\limits_{J K A}=0         (2)

Now, on B D E and J K A, z=R e^{i \theta} where \theta goes from \theta_{0} to \pi and \pi to 2 \pi-\theta_{0}, respectively.

On E F, z+1=u e^{\pi i}, \sqrt{z+1}=\sqrt{u} e^{\pi i / 2}=i \sqrt{u}; whereas on H J, z+1=u e^{-\pi i}, \sqrt{z+1}=\sqrt{u} e^{-\pi i / 2}= -i \sqrt{u}. In both cases, z=-u-1, d z=-d u, where u varies from R-1 to \epsilon along E F and \epsilon to R-1 along H J.

On F G H, z+1=\epsilon e^{i \phi} where \phi goes from -\pi to \pi. Thus, (2) can be written

\begin{aligned} \int\limits_{a-i T}^{a+i T} \frac{e^{z t}}{\sqrt{z+1}} d z & +\int\limits_{\theta_{0}}^{\pi} \frac{e^{R e^{i \theta t}}}{\sqrt{R e^{i \theta}+1}} i R e^{i \theta} d \theta+\int\limits_{R-1}^{\epsilon} \frac{e^{-(u+1) t}(-d u)}{i \sqrt{u}} \\ & +\int\limits_{\pi}^{-\pi} \frac{e^{\left(\epsilon e^{i \phi}-1\right) t}}{\sqrt{\epsilon e^{i \phi}+1}} i \epsilon e^{i \phi} d \phi+\int\limits_{\epsilon}^{R-1} \frac{e^{-(u+1) t}(-d u)}{-i \sqrt{u}} \\ & +\int\limits_{\pi}^{2 \pi-\theta_{0}} \frac{e^{R e^{i \theta} t}}{\sqrt{R e^{i \theta}+1}} i R e^{i \theta} d \theta=0 & (3) \end{aligned}

Let us now take the limit as R \rightarrow \infty (and \left.T=\sqrt{R^{2}-a^{2}} \rightarrow \infty\right) and \epsilon \rightarrow 0. We can show (see Problem 7.111) that the second, fourth, and sixth integrals approach zero. Hence, we have

\int\limits_{a-i \infty}^{a+i \infty} \frac{e^{z t}}{\sqrt{z+1}} d z=\underset{\substack{\epsilon \rightarrow 0 \\ R \rightarrow \infty}}{\lim} 2 i \int\limits_{\epsilon}^{R-1} \frac{e^{-(n+1) t}}{\sqrt{u}} d u=2 i \int\limits_{0}^{\infty} \frac{e^{-(u+1) t}}{\sqrt{u}} d u

or letting u=v^{2}

\frac{1}{2 \pi i} \int\limits_{i \infty}^{a+i \infty} \frac{e^{z t}}{\sqrt{z+1}} d z=\frac{1}{\pi} \int\limits_{0}^{\infty} \frac{e^{-(u+1) t}}{\sqrt{u}} d u=\frac{2 e^{-t}}{\pi} \int\limits_{0}^{\infty} e^{-v^{2} t} d v=\frac{e^{-t}}{\sqrt{\pi t}}

7.15

Related Answered Questions

Question: 7.35

Verified Answer:

We can write the result of Problem 7.34 in the for...
Question: 7.34

Verified Answer:

Consider the function f(z)=\cot z-\frac{1}{...
Question: 7.33

Verified Answer:

Let f(z) have poles at z=a_{...
Question: 7.32

Verified Answer:

We have \begin{aligned} F(z) & =\frac...
Question: 7.28

Verified Answer:

We have \begin{aligned} F(z) & =\frac...
Question: 7.27

Verified Answer:

The result of Problem 7.26 can be written in the f...
Question: 7.26

Verified Answer:

Let f(z)=1 /\left(z^{2}+a^{2}\right)[/latex...