Question 24.2: Evaluate the diffusion coefficient of carbon dioxide in air ...
Evaluate the diffusion coefficient of carbon dioxide in air at 20^{\circ} \mathrm{C} and atmospheric pressure. Compare this value with the experimental value reported in appendix table J.1.
Table J.1 Binary mass diffusivities in gases† | |||
System | T ( K ) | D_{AB}P ( cm² atm / s ) | D_{AB}P ( m² Pa / s ) |
Air | |||
Ammonia | 273 | 0.198 | 2.006 |
Aniline | 298 | 0.0726 | 0.735 |
Benzene | 298 | 0.0962 | 0.974 |
Bromine | 293 | 0.091 | 0.923 |
Carbon dioxide | 273 | 0.136 | 1.378 |
Carbon disulfide | 273 | 0.0883 | 0.894 |
Chlorine | 273 | 0.124 | 1.256 |
Diphenyl | 491 | 0.160 | 1.621 |
Ethyl acetate | 273 | 0.0709 | 0.718 |
Ethanol | 298 | 0.132 | 1.337 |
Ethyl ether | 293 | 0.0896 | 0.908 |
Iodine | 298 | 0.0834 | 0.845 |
Methanol | 298 | 0.162 | 1.641 |
Mercury | 614 | 0.473 | 4.791 |
Naphthalene | 298 | 0.0611 | 0.619 |
Nitrobenzene | 298 | 0.0868 | 0.879 |
n – Octane | 298 | 0.0602 | 0.610 |
Oxygen | 273 | 0.175 | 1.773 |
Propyl acetate | 315 | 0.092 | 0.932 |
Sulfur dioxide | 273 | 0.122 | 1.236 |
Toluene | 298 | 0.0844 | 0.855 |
Water | 298 | 0.260 | 2.634 |
Ammonia | |||
Ethylene | 293 | 0.177 | 1.793 |
Argon | |||
Neon | 293 | 0.329 | 3.333 |
Carbon dioxide | |||
Benzene | 318 | 0.0715 | 0.724 |
Carbon disulfide | 318 | 0.0715 | 0.724 |
Ethyl acetate | 319 | 0.0666 | 0.675 |
(continued) | |||
Table J.1 (Continued) | |||
System | T ( K ) | D_{AB}P ( cm² atm / s ) | D_{AB}P ( m² Pa / s ) |
Ethanol | 273 | 0.0693 | 0.702 |
Ethyl ether | 273 | 0.0541 | 0.548 |
Hydrogen | 273 | 0.550 | 5.572 |
Methane | 273 | 0.153 | 1.550 |
Methanol | 298.6 | 0.105 | 1.064 |
Nitrogen | 298 | 0.165 | 1.672 |
Nitrous oxide | 298 | 0.117 | 1.185 |
Propane | 298 | 0.0863 | 0.874 |
Water | 298 | 0.164 | 1.661 |
Carbon monoxide | |||
Ethylene | 273 | 0.151 | 1.530 |
Hydrogen | 273 | 0.651 | 6.595 |
Nitrogen | 288 | 0.192 | 1.945 |
Oxygen | 273 | 0.185 | 1.874 |
Helium | |||
Argon | 273 | 0.641 | 6.493 |
Benzene | 298 | 0.384 | 3.890 |
Ethanol | 298 | 0.494 | 5.004 |
Hydrogen | 293 | 1.64 | 16.613 |
Neon | 293 | 1.23 | 12.460 |
Water | 298 | 0.908 | 9.198 |
Hydrogen | |||
Ammonia | 293 | 0.849 | 8.600 |
Argon | 293 | 0.770 | 7.800 |
Benzene | 273 | 0.317 | 3.211 |
Ethane | 273 | 0.439 | 4.447 |
Methane | 273 | 0.625 | 6.331 |
Oxygen | 273 | 0.697 | 7.061 |
Water | 293 | 0.850 | 8.611 |
Nitrogen | |||
Ammonia | 293 | 0.241 | 2.441 |
Ethylene | 298 | 0.163 | 1.651 |
Hydrogen | 288 | 0.743 | 7.527 |
Iodine | 273 | 0.070 | 0.709 |
Oxygen | 273 | 0.181 | 1.834 |
Oxygen | |||
Ammonia | 293 | 0.253 | 2.563 |
Benzene | 296 | 0.0939 | 0.951 |
Ethylene | 293 | 0.182 | 1.844 |
†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958, Chapter. 8.
Learn more on how we answer questions.
From Appendix Table K.2, the values of s and e / k are obtained
\begin{array}{lll} & \boldsymbol{\sigma}, \textbf{ in } \overset{\circ }{\textbf{A}} & \varepsilon_{A} / \kappa, \textbf{ in } \mathbf{K} \\ \text { Carbon dioxide } & 3.996 & 190 \\ \text { Air } & 3.617 & 97\end{array}
The various parameters for equation (24-33)
D_{A B}=\frac{0.001858F^{3/2}\left[\frac{1}{M_{A}}+\frac{1}{M_{B}}\right]^{1/2}}{P\sigma_{A B}^{2}\Omega_{D}} (24-33)
may be evaluated as follows:
\begin{aligned} \sigma_{A B} & =\frac{\sigma_{A}+\sigma_{B}}{2}=\frac{3.996+3.617}{2}=3.806 \overset{\circ }{\text{A}} \\ \varepsilon_{A B} / \kappa & =\sqrt{\left(\varepsilon_{A} / \kappa\right)\left(\varepsilon_{B} / \kappa\right)}=\sqrt{(190)(97)}=136 \\ T & =20+273=293 \mathrm{~K} \\ P & =1 \mathrm{~atm} \\ \frac{\varepsilon_{A B}}{\kappa T} & =\frac{136}{293}=0.463 \\ \frac{\kappa T}{\varepsilon_{A B}} & =2.16 \\ \Omega_{D}(\text { Table } \mathrm{K} .1) & =1.047 \\ M_{\mathrm{CO}_{2}} & =44 \end{aligned}
and
M_{\text {Air }}=29
Substituting these values into equation (24-33), we obtain
\begin{aligned} D_{A B} & =\frac{0.001858 T^{3 / 2}\left(1 / M_{A}+1 / M_{B}\right)^{1 / 2}}{P \sigma_{A B}^{2} \Omega_{D}} \\ & =\frac{(0.001858)(293)^{3 / 2}(1 / 44+1 / 29)^{1 / 2}}{(1)(3.806)^{2}(1.047)}=0.147 \mathrm{~cm}^{2} / \mathrm{s} \end{aligned}
From Appendix Table J.1 for \mathrm{CO}_{2} in air at 273 \mathrm{~K}, 1 atm, we have
D_{A B}=0.136 \mathrm{~cm}^{2} / \mathrm{s}
Equation (24-41)
D_{A B_{T_2, P_1}}=D_{A B_{T_1}, p_1}\left(\frac{P_1}{P_2}\right)\left(\frac{T_2}{T_1}\right)^{3 / 2} \frac{\left.\Omega_D\right|_{T_1}}{\left.\Omega_D\right|_{T_2}} (24-41)
will be used to correct for the differences in temperature
\frac{D_{A B, T_{1}}}{D_{A B, T_{2}}}=\left(\frac{T_{1}}{T_{2}}\right)^{3 / 2}\left(\frac{\Omega_{D} \mid T_{2}}{\Omega_{D} \mid T_{1}}\right)
Values for \Omega_{D} may be evaluated as follows:
\begin{array}{ll} \text { at } T_{2}=273 & \varepsilon_{A B} / \kappa T=\frac{136}{273}=\left.0.498 \quad \Omega_{D}\right|_{T_{2}}=1.074 \\ \text { at } T_{1}=293 & \left.\Omega_{D}\right|_{T_{1}}=1.074 \quad \text { (previous calculations) } \end{array}
The corrected value for the diffusion coefficient at 20^{\circ} \mathrm{C} is
D_{A B, T_{1}}=\left(\frac{293}{273}\right)^{3 / 2}\left(\frac{1.074}{1.047}\right)(0.136)=0.155 \mathrm{~cm}^{2} / \mathrm{s} \quad\left(1.55 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)
TABLE 1 | |||||
Table K.1 The collision integrals, \Omega_\mu \text { and } \Omega_D, based on the Lennard–Jones potential† | |||||
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
WD (for mass diffusivity) |
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity) |
1.75 | 1.234 | 1.128 | |||
0.30 | 2.785 | 2.662 | 1.80 | 1.221 | 1.116 |
0.35 | 2.628 | 2.476 | 1.85 | 1.209 | 1.105 |
0.40 | 2.492 | 2.318 | 1.90 | 1.197 | 1.094 |
0.45 | 2.368 | 2.184 | 1.95 | 1.186 | 1.084 |
0.50 | 2.257 | 2.066 | 2.00 | 1.175 | 1.075 |
0.55 | 2.156 | 1.966 | 2.10 | 1.156 | 1.057 |
0.60 | 2.065 | 1.877 | 2.20 | 1.138 | 1.041 |
0.65 | 1.982 | 1.798 | 2.30 | 1.122 | 1.026 |
0.70 | 1.908 | 1.729 | 2.40 | 1.107 | 1.012 |
0.75 | 1.841 | 1.667 | 2.50 | 1.093 | 0.9996 |
0.80 | 1.780 | 1.612 | 2.60 | 1.081 | 0.9878 |
0.85 | 1.725 | 1.562 | 2.70 | 1.069 | 0.9770 |
0.90 | 1.675 | 1.517 | 2.80 | 1.058 | 0.9672 |
0.95 | 1.629 | 1.476 | 2.90 | 1.048 | 0.9576 |
1.00 | 1.587 | 1.439 | 3.00 | 1.039 | 0.9490 |
1.05 | 1.549 | 1.406 | 3.10 | 1.030 | 0.9406 |
1.10 | 1.514 | 1.375 | 3.20 | 1.022 | 0.9328 |
1.15 | 1.482 | 1.346 | 3.30 | 1.014 | 0.9256 |
1.20 | 1.452 | 1.320 | 3.40 | 1.007 | 0.9186 |
1.25 | 1.424 | 1.296 | 3.50 | 0.9999 | 0.9120 |
1.30 | 1.399 | 1.273 | 3.60 | 0.9932 | 0.9058 |
1.35 | 1.375 | 1.253 | 3.70 | 0.9870 | 0.8998 |
1.40 | 1.353 | 1.233 | 3.80 | 0.9811 | 0.8942 |
1.45 | 1.333 | 1.215 | 3.90 | 0.9755 | 0.8888 |
1.50 | 1.314 | 1.198 | 4.00 | 0.9700 | 0.8836 |
1.55 | 1.296 | 1.182 | 4.10 | 0.9649 | 0.8788 |
1.60 | 1.279 | 1.167 | 4.20 | 0.9600 | 0.8740 |
1.65 | 1.264 | 1.153 | 4.30 | 0.9553 | 0.8694 |
(continued) | |||||
Table K.1 (Continued) | |||||
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
WD (for mass diffusivity) |
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity) |
1.70 | 1.248 | 1.140 | 4.40 | 0.9507 | 0.8652 |
4.50 | 0.9464 | 0.8610 | 10.0 | 0.8242 | 0.7424 |
4.60 | 0.9422 | 0.8568 | 20.0 | 0.7432 | 0.6640 |
4.70 | 0.9382 | 0.8530 | 30.0 | 0.7005 | 0.6232 |
4.80 | 0.9343 | 0.8492 | 40.0 | 0.6718 | 0.5960 |
4.90 | 0.9305 | 0.8456 | 50.0 | 0.6504 | 0.5756 |
5.0 | 0.9269 | 0.8422 | 60.0 | 0.6335 | 0.5596 |
6.0 | 0.8963 | 0.8124 | 70.0 | 0.6194 | 0.5464 |
7.0 | 0.8727 | 0.7896 | 80.0 | 0.6076 | 0.5352 |
8.0 | 0.8538 | 0.7712 | 90.0 | 0.5973 | 0.5256 |
Table K.2 Lennard–Jones force constants calculated from viscosity data† | |||
Compound | Formula | \epsilon_A / \kappa \text {, in }(\mathrm{K}) | \sigma \text {, in } \overset{\circ }{\text{A}} |
Acetylene | C₂H₂ | 185 | 4.221 |
Air | 97 | 3.617 | |
Argon | A | 124 | 3.418 |
Arsine | \mathrm{AsH}_3 | 281 | 4.06 |
Benzene | \mathrm{C}_6 \mathrm{H}_6 | 440 | 5.270 |
Bromine | Br₂ | 520 | 4.268 |
i – Butane | \mathrm{C}_4 \mathrm{H}_{10} | 313 | 5.341 |
n – Butane | \mathrm{C}_4 \mathrm{H}_{10} | 410 | 4.997 |
Carbon dioxide | CO₂ | 190 | 3.996 |
Carbon disulfide | CS₂ | 488 | 4.438 |
Carbon monoxide | CO | 110 | 3.590 |
Carbon tetrachloride | CCL_4 | 327 | 5.881 |
Carbonyl sulfide | COS | 335 | 4.13 |
Chlorine | Cl₂ | 357 | 4.115 |
Chloroform | CHCl_3 | 327 | 5.430 |
Cyanogen | C₂N₂ | 339 | 4.38 |
Cyclohexane | \mathrm{C}_6 \mathrm{H}_{12} | 324 | 6.093 |
Ethane | C_2H_6 | 230 | 4.418 |
Ethanol | C_2H_5OH | 391 | 4.455 |
Ethylene | C_2H_6 | 205 | 4.232 |
Fluorine | F₂ | 112 | 3.653 |
Helium | He | 10.22 | 2.576 |
n – Heptane | \mathrm{C}_2 \mathrm{H}_{16} | 282‡ | 8.88³ |
n – Hexane | \mathrm{C}_6 \mathrm{H}_{14} | 413 | 5.909 |
Hydrogen | H₂ | 33.3 | 2.968 |
Hydrogen chloride | HCI | 360 | 3.305 |
† R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958. ‡ Calculated from virial coefficients.1 | |||
Table K.2 (Continued) | |||
Compound | Formula | \epsilon_A / \kappa \text {, in }(\mathrm{K}) | \sigma \text {, in } \overset{\circ }{\text{A}} |
Hydrogen iodide | HI | 324 | 4.123 |
Iodine | I₂ | 550 | 4.982 |
Krypton | Kr | 190 | 3.60 |
Methane | \mathrm{CH}_4 | 136.5 | 3.822 |
Methanol | \mathrm{CH}_3 \mathrm{OH} | 507 | 3.585 |
Methylene chloride | CH₂Cl₂ | 406 | 4.759 |
Methyl chloride | \mathrm{CH}_3 \mathrm{Cl} | 855 | 3.375 |
Mercuric iodide | HgI₂ | 691 | 5.625 |
Mercury | Hg | 851 | 2.898 |
Neon | Ne | 35.7 | 2.789 |
Nitric oxide | NO | 119 | 3.470 |
Nitrogen | N₂ | 91.5 | 3.681 |
Nitrous oxide | N₂O | 220 | 3.879 |
n – Nonane | C₂H_{20} | 240 | 8.448 |
n – Octane | C_8H_{18} | 320 | 7.451 |
Oxygen | O₂ | 113 | 3.433 |
n – Pentane | \mathrm{C}_5 \mathrm{H}_{12} | 345 | 5.769 |
Propane | \mathrm{C}_3 \mathrm{H}_8 | 254 | 5.061 |
Silane | SiH_4 | 207.6 | 4.08 |
Silicon tetrachloride | SiCl_4 | 358 | 5.08 |
Sulfur dioxide | SO₂ | 252 | 4.290 |
Water | H₂O | 356 | 2.649 |
Xenon | Xe | 229 | 4.055 |
†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958.
‡Calculated from virial coefficients.