Question 24.2: Evaluate the diffusion coefficient of carbon dioxide in air ...

Evaluate the diffusion coefficient of carbon dioxide in air at 20^{\circ} \mathrm{C} and atmospheric pressure. Compare this value with the experimental value reported in appendix table J.1.

Table J.1 Binary mass diffusivities in gases†
System T ( K ) D_{AB}P ( cm² atm / s ) D_{AB}P ( m² Pa / s )
Air
Ammonia 273 0.198 2.006
Aniline 298 0.0726 0.735
Benzene 298 0.0962 0.974
Bromine 293 0.091 0.923
Carbon dioxide 273 0.136 1.378
Carbon disulfide 273 0.0883 0.894
Chlorine 273 0.124 1.256
Diphenyl 491 0.160 1.621
Ethyl acetate 273 0.0709 0.718
Ethanol 298 0.132 1.337
Ethyl ether 293 0.0896 0.908
Iodine 298 0.0834 0.845
Methanol 298 0.162 1.641
Mercury 614 0.473 4.791
Naphthalene 298 0.0611 0.619
Nitrobenzene 298 0.0868 0.879
n – Octane 298 0.0602 0.610
Oxygen 273 0.175 1.773
Propyl acetate 315 0.092 0.932
Sulfur dioxide 273 0.122 1.236
Toluene 298 0.0844 0.855
Water 298 0.260 2.634
Ammonia
Ethylene 293 0.177 1.793
Argon
Neon 293 0.329 3.333
Carbon dioxide
Benzene 318 0.0715 0.724
Carbon disulfide 318 0.0715 0.724
Ethyl acetate 319 0.0666 0.675
(continued)
Table J.1 (Continued)
System T ( K ) D_{AB}P ( cm² atm / s ) D_{AB}P ( m² Pa / s )
Ethanol 273 0.0693 0.702
Ethyl ether 273 0.0541 0.548
Hydrogen 273 0.550 5.572
Methane 273 0.153 1.550
Methanol 298.6 0.105 1.064
Nitrogen 298 0.165 1.672
Nitrous oxide 298 0.117 1.185
Propane 298 0.0863 0.874
Water 298 0.164 1.661
Carbon monoxide
Ethylene 273 0.151 1.530
Hydrogen 273 0.651 6.595
Nitrogen 288 0.192 1.945
Oxygen 273 0.185 1.874
Helium
Argon 273 0.641 6.493
Benzene 298 0.384 3.890
Ethanol 298 0.494 5.004
Hydrogen 293 1.64 16.613
Neon 293 1.23 12.460
Water 298 0.908 9.198
Hydrogen
Ammonia 293 0.849 8.600
Argon 293 0.770 7.800
Benzene 273 0.317 3.211
Ethane 273 0.439 4.447
Methane 273 0.625 6.331
Oxygen 273 0.697 7.061
Water 293 0.850 8.611
Nitrogen
Ammonia 293 0.241 2.441
Ethylene 298 0.163 1.651
Hydrogen 288 0.743 7.527
Iodine 273 0.070 0.709
Oxygen 273 0.181 1.834
Oxygen
Ammonia 293 0.253 2.563
Benzene 296 0.0939 0.951
Ethylene 293 0.182 1.844

†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958, Chapter. 8.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Appendix Table K.2, the values of s and e / k are obtained

\begin{array}{lll} & \boldsymbol{\sigma}, \textbf{ in } \overset{\circ }{\textbf{A}} & \varepsilon_{A} / \kappa, \textbf{ in } \mathbf{K} \\ \text { Carbon dioxide } & 3.996 & 190 \\ \text { Air } & 3.617 & 97\end{array}

The various parameters for equation (24-33)

D_{A B}=\frac{0.001858F^{3/2}\left[\frac{1}{M_{A}}+\frac{1}{M_{B}}\right]^{1/2}}{P\sigma_{A B}^{2}\Omega_{D}}       (24-33)

may be evaluated as follows:

\begin{aligned} \sigma_{A B} & =\frac{\sigma_{A}+\sigma_{B}}{2}=\frac{3.996+3.617}{2}=3.806  \overset{\circ }{\text{A}} \\ \varepsilon_{A B} / \kappa & =\sqrt{\left(\varepsilon_{A} / \kappa\right)\left(\varepsilon_{B} / \kappa\right)}=\sqrt{(190)(97)}=136 \\ T & =20+273=293 \mathrm{~K} \\ P & =1 \mathrm{~atm} \\ \frac{\varepsilon_{A B}}{\kappa T} & =\frac{136}{293}=0.463 \\ \frac{\kappa T}{\varepsilon_{A B}} & =2.16 \\ \Omega_{D}(\text { Table } \mathrm{K} .1) & =1.047 \\ M_{\mathrm{CO}_{2}} & =44 \end{aligned}

and

M_{\text {Air }}=29

Substituting these values into equation (24-33), we obtain

\begin{aligned} D_{A B} & =\frac{0.001858 T^{3 / 2}\left(1 / M_{A}+1 / M_{B}\right)^{1 / 2}}{P \sigma_{A B}^{2} \Omega_{D}} \\ & =\frac{(0.001858)(293)^{3 / 2}(1 / 44+1 / 29)^{1 / 2}}{(1)(3.806)^{2}(1.047)}=0.147 \mathrm{~cm}^{2} / \mathrm{s} \end{aligned}

From Appendix Table J.1 for \mathrm{CO}_{2} in air at 273 \mathrm{~K}, 1 atm, we have

D_{A B}=0.136 \mathrm{~cm}^{2} / \mathrm{s}

Equation (24-41)

D_{A B_{T_2, P_1}}=D_{A B_{T_1}, p_1}\left(\frac{P_1}{P_2}\right)\left(\frac{T_2}{T_1}\right)^{3 / 2} \frac{\left.\Omega_D\right|_{T_1}}{\left.\Omega_D\right|_{T_2}}       (24-41)

will be used to correct for the differences in temperature

\frac{D_{A B, T_{1}}}{D_{A B, T_{2}}}=\left(\frac{T_{1}}{T_{2}}\right)^{3 / 2}\left(\frac{\Omega_{D} \mid T_{2}}{\Omega_{D} \mid T_{1}}\right)

Values for \Omega_{D} may be evaluated as follows:

\begin{array}{ll} \text { at } T_{2}=273 & \varepsilon_{A B} / \kappa T=\frac{136}{273}=\left.0.498 \quad \Omega_{D}\right|_{T_{2}}=1.074 \\ \text { at } T_{1}=293 & \left.\Omega_{D}\right|_{T_{1}}=1.074 \quad \text { (previous calculations) } \end{array}

The corrected value for the diffusion coefficient at 20^{\circ} \mathrm{C} is

D_{A B, T_{1}}=\left(\frac{293}{273}\right)^{3 / 2}\left(\frac{1.074}{1.047}\right)(0.136)=0.155 \mathrm{~cm}^{2} / \mathrm{s} \quad\left(1.55 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)

TABLE 1
Table K.1 The collision integrals, \Omega_\mu \text { and } \Omega_D, based on the Lennard–Jones potential†
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
WD (for mass
diffusivity)
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D
(for mass
diffusivity)
1.75 1.234 1.128
0.30 2.785 2.662 1.80 1.221 1.116
0.35 2.628 2.476 1.85 1.209 1.105
0.40 2.492 2.318 1.90 1.197 1.094
0.45 2.368 2.184 1.95 1.186 1.084
0.50 2.257 2.066 2.00 1.175 1.075
0.55 2.156 1.966 2.10 1.156 1.057
0.60 2.065 1.877 2.20 1.138 1.041
0.65 1.982 1.798 2.30 1.122 1.026
0.70 1.908 1.729 2.40 1.107 1.012
0.75 1.841 1.667 2.50 1.093 0.9996
0.80 1.780 1.612 2.60 1.081 0.9878
0.85 1.725 1.562 2.70 1.069 0.9770
0.90 1.675 1.517 2.80 1.058 0.9672
0.95 1.629 1.476 2.90 1.048 0.9576
1.00 1.587 1.439 3.00 1.039 0.9490
1.05 1.549 1.406 3.10 1.030 0.9406
1.10 1.514 1.375 3.20 1.022 0.9328
1.15 1.482 1.346 3.30 1.014 0.9256
1.20 1.452 1.320 3.40 1.007 0.9186
1.25 1.424 1.296 3.50 0.9999 0.9120
1.30 1.399 1.273 3.60 0.9932 0.9058
1.35 1.375 1.253 3.70 0.9870 0.8998
1.40 1.353 1.233 3.80 0.9811 0.8942
1.45 1.333 1.215 3.90 0.9755 0.8888
1.50 1.314 1.198 4.00 0.9700 0.8836
1.55 1.296 1.182 4.10 0.9649 0.8788
1.60 1.279 1.167 4.20 0.9600 0.8740
1.65 1.264 1.153 4.30 0.9553 0.8694
(continued)
Table K.1 (Continued)
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
WD (for mass
diffusivity)
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D
(for mass
diffusivity)
1.70 1.248 1.140 4.40 0.9507 0.8652
4.50 0.9464 0.8610 10.0 0.8242 0.7424
4.60 0.9422 0.8568 20.0 0.7432 0.6640
4.70 0.9382 0.8530 30.0 0.7005 0.6232
4.80 0.9343 0.8492 40.0 0.6718 0.5960
4.90 0.9305 0.8456 50.0 0.6504 0.5756
5.0 0.9269 0.8422 60.0 0.6335 0.5596
6.0 0.8963 0.8124 70.0 0.6194 0.5464
7.0 0.8727 0.7896 80.0 0.6076 0.5352
8.0 0.8538 0.7712 90.0 0.5973 0.5256
Table K.2 Lennard–Jones force constants calculated from viscosity data†
Compound Formula \epsilon_A / \kappa \text {, in }(\mathrm{K}) \sigma \text {, in } \overset{\circ }{\text{A}}
Acetylene C₂H₂ 185 4.221
Air 97 3.617
Argon A 124 3.418
Arsine \mathrm{AsH}_3 281 4.06
Benzene \mathrm{C}_6 \mathrm{H}_6 440 5.270
Bromine Br₂ 520 4.268
i – Butane \mathrm{C}_4 \mathrm{H}_{10} 313 5.341
n – Butane \mathrm{C}_4 \mathrm{H}_{10} 410 4.997
Carbon dioxide CO₂ 190 3.996
Carbon disulfide CS₂ 488 4.438
Carbon monoxide CO 110 3.590
Carbon tetrachloride CCL_4 327 5.881
Carbonyl sulfide COS 335 4.13
Chlorine Cl₂ 357 4.115
Chloroform CHCl_3 327 5.430
Cyanogen C₂N₂ 339 4.38
Cyclohexane \mathrm{C}_6 \mathrm{H}_{12} 324 6.093
Ethane C_2H_6 230 4.418
Ethanol C_2H_5OH 391 4.455
Ethylene C_2H_6 205 4.232
Fluorine F₂ 112 3.653
Helium He 10.22 2.576
n – Heptane \mathrm{C}_2 \mathrm{H}_{16} 282‡ 8.88³
n – Hexane \mathrm{C}_6 \mathrm{H}_{14} 413 5.909
Hydrogen H₂ 33.3 2.968
Hydrogen chloride HCI 360 3.305
† R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958. ‡ Calculated from virial coefficients.1
Table K.2 (Continued)
Compound Formula \epsilon_A / \kappa \text {, in }(\mathrm{K}) \sigma \text {, in } \overset{\circ }{\text{A}}
Hydrogen iodide HI 324 4.123
Iodine I₂ 550 4.982
Krypton Kr 190 3.60
Methane \mathrm{CH}_4 136.5 3.822
Methanol \mathrm{CH}_3 \mathrm{OH} 507 3.585
Methylene chloride CH₂Cl₂ 406 4.759
Methyl chloride \mathrm{CH}_3 \mathrm{Cl} 855 3.375
Mercuric iodide HgI₂ 691 5.625
Mercury Hg 851 2.898
Neon Ne 35.7 2.789
Nitric oxide NO 119 3.470
Nitrogen N₂ 91.5 3.681
Nitrous oxide N₂O 220 3.879
n – Nonane C₂H_{20} 240 8.448
n – Octane C_8H_{18} 320 7.451
Oxygen O₂ 113 3.433
n – Pentane \mathrm{C}_5 \mathrm{H}_{12} 345 5.769
Propane \mathrm{C}_3 \mathrm{H}_8 254 5.061
Silane SiH_4 207.6 4.08
Silicon tetrachloride SiCl_4 358 5.08
Sulfur dioxide SO₂ 252 4.290
Water H₂O 356 2.649
Xenon Xe 229 4.055

†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958.
‡Calculated from virial coefficients.

Related Answered Questions