Question 1.3.8: Evaluating and Simplifying a Difference Quotient If f(x) = 2...

Evaluating and Simplifying a Difference Quotient

If f(x) = 2x² – x + 3, find and simplify each expression:

a. f(x + h)          b. \frac{f(x + h) – f(x)}{h}, h ≠ 0.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. We find f(x + h) by replacing x with x + h each time that x appears in the equation.

= 2(x² + 2xh + h²) – x – h + 3

= 2x² + 4xh + 2h² – x – h + 3

b. Using our result from part (a), we obtain the following:

=\frac{2x^2+4xh+2h^2-x-h+3-2x^2+x-3}{h}             Remove parentheses and change the                                                                      sign of each term in the parentheses.

Group                                                                                                                         like terms.                                                                                                                            Simplify.

=\frac{h(4x + 2h – 1)}{h}                      Factor h from the numerator.

= 4x + 2h – 1                   Divide out identical factors of h in the numerator                                                     and denominator.

Related Answered Questions

Question: 1.3.3

Verified Answer:

Test for symmetry with respect to the y-axis. Repl...
Question: 1.3.7

Verified Answer:

We graph f in two parts, using a partial table of ...