Question 2.8.3: Evaluating Combinations of Functions If possible, use the gi...

Evaluating Combinations of Functions

If possible, use the given representations of functions ƒ and g to evaluate

(ƒ + g)(4),    (ƒ – g)(-2),    (ƒg)(1),    and     ( \frac{ƒ}{g} )(0).

(a)

(b)

x ƒ(x) g(x)
-2 -3 undefined
0 1 0
1 3 1
4 9 2

(c) ƒ(x) = 2x + 1,   g(x) = \sqrt{x}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From the figure, ƒ(4) = 9 and g(4) = 2.

(ƒ + g)(4)

= ƒ(4) + g(4)               (ƒ + g)(x)= ƒ(x) + g(x)

= 9 + 2                         Substitute.

= 11                              Add.

For (ƒ – g)(-2), although ƒ(-2) = -3, g(-2) is undefined because -2 is not in the domain of g. Thus (ƒ – g)(-2) is undefined.

he domains of ƒ and g both include 1.

(ƒg)(1)

= ƒ(1) • g(1)             (ƒg)(x) = ƒ(x) • g(x)

= 3 • 1                       Substitute.

= 3                              Multiply.

The graph of g includes the origin, so g(0) = 0. Thus  ( \frac{ƒ}{g} )(0) is undefined.

(b) From the table, ƒ(4) = 9 and g(4) = 2.

(ƒ + g)(4)

= ƒ(4) + g(4)            (ƒ + g)(x) = ƒ(x) + g(x)

= 9 + 2                     Substitute.

= 11                          Add.

In the table, g(-2) is undefined, and thus (ƒ – g)(-2) is also undefined.

(ƒg)(1)

= ƒ(1) • g(1)         (fg)(x) = ƒ(x) • g(x)

= 3 • 1                  ƒ(1) = 3 and g(1) = 1

= 3                        Multiply.

The quotient function value  ( \frac{ƒ}{g} )(0) is undefined because the denominator, g(0), equals 0.

(c) Using ƒ(x) = 2x + 1 and g(x) =\sqrt{x}, we can find (ƒ + g)(4) and (ƒg)(1). Because -2 is not in the domain of g, (ƒ – g)(-2) is not defined.

\left.\begin{matrix}(ƒ + g)(4) \\  \\ = ƒ(4) + g(4)\\ \\ = (2 • 4 + 1) + \sqrt{4}\\ \\= 9 + 2 \\ \\ = 11\end{matrix} \right| \begin{matrix} (ƒg)(1) \\ \\ = ƒ(1) • g(1) \\ \\ = (2 • 1 + 1) • \sqrt{1}\\ \\ = 3(1)\\ \\ = 3 \end{matrix}

( \frac{ƒ}{g} )(0) is undefined since g(0) = 0.

Related Answered Questions

Question: 2.5.8

Verified Answer:

We write an equivalent equation with 0 on one side...
Question: 2.8.9

Verified Answer:

Note the repeated quantity x² - 5. If we choose g(...