Question 12.12: Extrema of Rayleigh Line Consider the T-s diagram of Rayleig...

Extrema of Rayleigh Line

Consider the T-s diagram of Rayleigh flow, as shown in Fig. 12–50. Using the differential forms of the conservation equations and property relations, show that the Mach number is Maa=1Ma_a = 1 at the point of maximum entropy (point a), and Mab=1k Ma _b=1 \sqrt{k} at the point of maximum temperature (point b).

12.50
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is to be shown that Maa=1Ma_a = 1 at the point of maximum entropy and Mab=1k Ma _b=1 \sqrt{k}  at the point of maximum temperature on the Rayleigh line.
Assumptions   The assumptions associated with Rayleigh flow (i.e., steady onedimensional flow of an ideal gas with constant properties through a constant crosssectional area duct with negligible frictional effects) are valid.
Analysis   The differential forms of the continuity (𝜌V = constant), momentum [rearranged as P + (𝜌V )V = constant], ideal gas (P = 𝜌RT ), and enthalpy change (Δh=cpΔTΔh = c_p ΔT ) equations are expressed as

ρV= constant ρ dV+V dρ=0dρρ=dVV \rho V=\text { constant } \rightarrow \rho  d V+V  d \rho=0 \rightarrow \frac{d \rho}{\rho}=-\frac{d V}{V}           (1)

P+(ρV)V= constant  dP+(ρV) dV=0dPdV=ρV P+(\rho V) V=\text { constant } \rightarrow  d P+(\rho V)  d V=0 \rightarrow \frac{d P}{d V}=-\rho V           (2)

P=ρRTdP=ρR dT+RT dρdPP=dTT+dρρ P=\rho R T \rightarrow d P=\rho R  d T+R T  d \rho \rightarrow \frac{d P}{P}=\frac{d T}{T}+\frac{d \rho}{\rho}          (3)

The differential form of the entropy change relation (Eq. 12–40) of an ideal gas with constant specific heats is

s2s1=cPlnT2T1RlnP2P1 s_2-s_1=c_P \ln \frac{T_2}{T_1}-R \ln \frac{P_2}{P_1}                 (12.40)

ds=cpdTTRdPP d s=c_p \frac{d T}{T}-R \frac{d P}{P}               (4)

Substituting Eq. 3 into Eq. 4 gives

ds=cpdTTR(dTT+dρρ)=(cpR)dTTRdρρ=Rk – 1dTTRdρρ d s=c_p \frac{d T}{T}-R\left(\frac{d T}{T}+\frac{d \rho}{\rho}\right)=\left(c_p-R\right) \frac{d T}{T}-R \frac{d \rho}{\rho}=\frac{R}{k  –  1} \frac{d T}{T}-R \frac{d \rho}{\rho}           (5)

since

cpR=cvkcvR=cvcv=R/(k1) c_p-R=c_v \quad \rightarrow \quad k c_v-R=c_v \quad \rightarrow \quad c_v=R /(k-1)

Dividing both sides of Eq. 5 by dT and combining with Eq. 1,

dsdT=RT(k – 1)+RVdVdT \frac{d s}{d T}=\frac{R}{T(k  –  1)}+\frac{R}{V} \frac{d V}{d T}                  (6)

Dividing Eq. 3 by dV and combining it with Eqs. 1 and 2 give, after rearranging,

dTdV=TVVR \frac{d T}{d V}=\frac{T}{V}-\frac{V}{R}             (7)

Substituting Eq. 7 into Eq. 6 and rearranging,

dsdT=RT(k – 1)+RT – V2/R=R(kRT – V2)T(k – 1)(RT – V2) \frac{d s}{d T}=\frac{R}{T(k  –  1)}+\frac{R}{T  –  V^2 / R}=\frac{R\left(k R T  –  V^2\right)}{T(k  –  1)\left(R T  –  V^2\right)}      (8)

Setting ds/dT = 0 and solving the resulting equation R(kRT − V²) = 0 for V give the velocity at point a to be

Va=kRTa and Maa=Vaca=kRTakRTa=1 V_a=\sqrt{k R T_a} \quad \text { and } \quad Ma _a=\frac{V_a}{c_a}=\frac{\sqrt{k R T_a}}{\sqrt{k R T_a}}=1        (9)

Therefore, sonic conditions exist at point a, and thus the Mach number is 1.
Setting dT/ds=(ds/dT)1=0dT /ds = (ds /dT )^{−1} = 0 and solving the resulting equation T(k − 1)×(RT − V2)=0T (k  −  1) × (RT  −  V^2) = 0 for velocity at point b give

Vb=RTb and Mab=Vbcb=RTbkRTb=1k V_b=\sqrt{R T_b} \quad \text { and } \quad Ma _b=\frac{V_b}{c_b}=\frac{\sqrt{R T_b}}{\sqrt{k R T_b}}=\frac{1}{\sqrt{k}}         (10)

Therefore, the Mach number at point b is Mab=1k Ma _b=1 \sqrt{k} . For air, k = 1.4 and thus Mab=0.845Ma_b = 0.845.

Discussion   Note that in Rayleigh flow, sonic conditions are reached as the entropy reaches its maximum value, and maximum temperature occurs during subsonic flow.

Related Answered Questions