Question 7.7: Fatigue Life of Instrument Panel with a Crack A long plate o...

Fatigue Life of Instrument Panel with a Crack

A long plate of an instrument is of width 2w and thickness t. The panel is subjected to an axial tensile load that varies from P_{\min} to P_{\max} with a complete cycle every 15 s. Before loading, on inspection, a central transverse crack of length 2a is detected on the plate. Estimate the expected life.

Given: a = 0.3 in., t = 0.8 in., w = 2 in., P_{\max} = 2P_{\min} = 144 kips.

Assumption: The plate is made of an AISI 4340 tempered steel.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See Tables 6.1, 6.2, and 7.5.

The material and geometric properties of the panel are

\begin{array}{l} A=3.6 \times 10^{-10}, \quad n=3, \quad K_c=53.7  ksi \sqrt{\operatorname{in}_{.}} \quad S_y=218  ksi , \\ \lambda=1.02, \quad \text { for } a / w=0.15 \quad \text { (Case A of Table } 6.1) \end{array}

Note that the values of a and t satisfy Table 6.2. The largest and smallest normal stresses are

\sigma_{\max }=\frac{P_{\max }}{2 w t}=\frac{144}{2(2)(0.8)}=45 ksi , \quad \sigma_{\min }=22.5 ksi

The cyclical stress range is then Δσ = 45 − 22.5 = 22.5 ksi.

The final crack length at fracture, from Equation 7.39, is found to be

a_f=\frac{1}{\pi}\left(\frac{K_c}{\lambda \sigma_{\max }}\right)^2=\frac{1}{\pi}\left(\frac{53.7}{1.02 \times 45}\right)^2=0.436  in .

Substituting the numerical values, Equation 7.41 results in

N=\frac{a_f^{1-n / 2}-a^{1-n / 2}}{A\left(1-\frac{n}{2}\right)(1.77 \lambda \Delta \sigma)^n}       (7.41)

N=\frac{0.436^{-0.5}-0.3^{-0.5}}{3.6\left(10^{-10}\right)(-0.5)[(1.77)(1.02)(22.5)]^3}=25,800  \text { cycles }

With a period of 15 s, approximate fatigue life L is

L=\frac{25,800(15)}{60(60)}=107.5  h

Table 6.1
Geometry Factors λ for Some Initial Crack Shapes
Case A. Tension of a long plate with a central crack

a/w
0.1
0.2
0.3
0.4
0.5
0.6
\lambda
1.01
1.03
1.06
1.11
1.19
1.30
Case B. Tension of a long plate with an edge crack

a/w
0 ( w \longrightarrow \infty )
0.2
0.4
0.5
\lambda
1.12
1.37
2.11
2.83
Case C. Tension of a long plate with double-edge cracks

a/w
0 ( w \longrightarrow \infty )
0.2
0.4
0.5
0.6
\lambda
1.12
1.12
1.14
1.15
1.22
Case D. Pure bending of a beam with an edge crack

a/w
0.1
0.2
0.3
0.4
0.5
0.6
\lambda
1.02
1.06
1.16
1.32
1.62
2.10
Table 6.2
Yield Strength S_{y} and Fracture Toughness K_{c} for Some Engineering Materials
S_{y} K_{c} Minimum Values
of a and t
Metals (MPa) (ksi) \sqrt{m} \sqrt{in.} (mm) (in.)
Steel
AISI4340
1503 (218) 59 (53.7) 3.9 (0.15)
Stainless steel
AISI 403
690 (100) 77 (70.1) 31.1 (1.22)
Aluminum
2024-T851
7075-T7351
444
392

(64.4)

(56.9)

23
31

(20.9)

(28.2)

6.7
15.6

(0.26)

(0.61)

Titanium
Ti-6A1–4V
Ti-6a1–6V
798
1149

(116)

(1671)

111
66

(101)

(60.1)

48.4
8.2

(1.91)

(0.32)

Table 7.5
Paris Equation Parameters for Various Steels
A
Steel SI Units U.S. Units n
Ferritic–pearlitic 6.90 \times  10^{−12} 3.60 \times  10^{−10} 3.00
Martensitic 1.35 \times  10^{−10} 6.60 \times  10^{−9} 2.25
Austenitic stainless 5.60 \times 10^{−12} 3.00 \times  10^{−10} 3.25
Source: Based on Barsom, J.M. and Rolfe, S.T., Fracture and Fatigue Control in Structures, 3rd ed., Oxford, U.K., Butterworth Heinemann, 1987.

Related Answered Questions