Question 7.7: Fatigue Life of Instrument Panel with a Crack A long plate o...
Fatigue Life of Instrument Panel with a Crack
A long plate of an instrument is of width 2w and thickness t. The panel is subjected to an axial tensile load that varies from P_{\min} to P_{\max} with a complete cycle every 15 s. Before loading, on inspection, a central transverse crack of length 2a is detected on the plate. Estimate the expected life.
Given: a = 0.3 in., t = 0.8 in., w = 2 in., P_{\max} = 2P_{\min} = 144 kips.
Assumption: The plate is made of an AISI 4340 tempered steel.
Learn more on how we answer questions.
See Tables 6.1, 6.2, and 7.5.
The material and geometric properties of the panel are
\begin{array}{l} A=3.6 \times 10^{-10}, \quad n=3, \quad K_c=53.7 ksi \sqrt{\operatorname{in}_{.}} \quad S_y=218 ksi , \\ \lambda=1.02, \quad \text { for } a / w=0.15 \quad \text { (Case A of Table } 6.1) \end{array}
Note that the values of a and t satisfy Table 6.2. The largest and smallest normal stresses are
\sigma_{\max }=\frac{P_{\max }}{2 w t}=\frac{144}{2(2)(0.8)}=45 ksi , \quad \sigma_{\min }=22.5 ksi
The cyclical stress range is then Δσ = 45 − 22.5 = 22.5 ksi.
The final crack length at fracture, from Equation 7.39, is found to be
a_f=\frac{1}{\pi}\left(\frac{K_c}{\lambda \sigma_{\max }}\right)^2=\frac{1}{\pi}\left(\frac{53.7}{1.02 \times 45}\right)^2=0.436 in .
Substituting the numerical values, Equation 7.41 results in
N=\frac{a_f^{1-n / 2}-a^{1-n / 2}}{A\left(1-\frac{n}{2}\right)(1.77 \lambda \Delta \sigma)^n} (7.41)
N=\frac{0.436^{-0.5}-0.3^{-0.5}}{3.6\left(10^{-10}\right)(-0.5)[(1.77)(1.02)(22.5)]^3}=25,800 \text { cycles }
With a period of 15 s, approximate fatigue life L is
L=\frac{25,800(15)}{60(60)}=107.5 h
Table 6.1 Geometry Factors λ for Some Initial Crack Shapes |
||
Case A. Tension of a long plate with a central crack
|
a/w 0.1 0.2 0.3 0.4 0.5 0.6 |
\lambda 1.01 1.03 1.06 1.11 1.19 1.30 |
Case B. Tension of a long plate with an edge crack
|
a/w 0 ( w \longrightarrow \infty ) 0.2 0.4 0.5 |
\lambda 1.12 1.37 2.11 2.83 |
Case C. Tension of a long plate with double-edge cracks
|
a/w 0 ( w \longrightarrow \infty ) 0.2 0.4 0.5 0.6 |
\lambda 1.12 1.12 1.14 1.15 1.22 |
Case D. Pure bending of a beam with an edge crack
|
a/w 0.1 0.2 0.3 0.4 0.5 0.6 |
\lambda 1.02 1.06 1.16 1.32 1.62 2.10 |
Table 6.2 Yield Strength S_{y} and Fracture Toughness K_{c} for Some Engineering Materials |
||||||
S_{y} | K_{c} | Minimum Values of a and t |
||||
Metals | (MPa) | (ksi) | \sqrt{m} | \sqrt{in.} | (mm) | (in.) |
Steel AISI4340 |
1503 | (218) | 59 | (53.7) | 3.9 | (0.15) |
Stainless steel AISI 403 |
690 | (100) | 77 | (70.1) | 31.1 | (1.22) |
Aluminum 2024-T851 7075-T7351 |
444 392 |
(64.4) (56.9) |
23 31 |
(20.9) (28.2) |
6.7 15.6 |
(0.26) (0.61) |
Titanium Ti-6A1–4V Ti-6a1–6V |
798 1149 |
(116) (1671) |
111 66 |
(101) (60.1) |
48.4 8.2 |
(1.91) (0.32) |
Table 7.5 Paris Equation Parameters for Various Steels |
|||
A | |||
Steel | SI Units | U.S. Units | n |
Ferritic–pearlitic | 6.90 \times 10^{−12} | 3.60 \times 10^{−10} | 3.00 |
Martensitic | 1.35 \times 10^{−10} | 6.60 \times 10^{−9} | 2.25 |
Austenitic stainless | 5.60 \times 10^{−12} | 3.00 \times 10^{−10} | 3.25 |
Source: Based on Barsom, J.M. and Rolfe, S.T., Fracture and Fatigue Control in Structures, 3rd ed., Oxford, U.K., Butterworth Heinemann, 1987. |