Question 7.11: Figure 7–32 shows the cross section of a beam that is to be ...

Figure 7–32 shows the cross section of a beam that is to be made from malleable iron, ASTM A220, grade 80002. The beam is subjected to a maximum bending moment of 1025 N · m, acting in a manner to place the bottom of the beam in tension and the top in compression. Compute the resulting design factor for the beam based on the ultimate strength of the iron. The area moment of inertia for the cross section is 1.80 × 10^{5}  mm^{4} .

143801 7-32
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective           Compute the design factor based on the ultimate strength.

Given                 Beam shape shown in Figure 7–32; I = 1.80 × 10^{5}  mm^{4} ; M = 1025 N · m  Material is malleable iron, ASTM A220, grade 80002.

Analysis             Because the beam cross section is not symmetrical, the value of the maximum tensile stress at the bottom of the beam, σ_{tb} , will be lower than the maximum compressive stress at the top, σ_{ct} . We will compute

σ_{tb}  = Mc_{b} /I    and    σ_{ct}  = Mc_{t} /I

where c_{b} = \bar{Y} = 14.04 mm and c_{t} = 50 − 14.04 = 35.96 mm. The tensile stress at the bottom will be compared with the ultimate tensile strength to determine the design factor based on tension, N_{c}   , from

σ_{tb}  = s_{u} /N_{t}    and    N_{t}  = s_{u} / \sigma_{tb}

Where s_{u} = 655 MPa from Appendix A–13. Then the compressive stress at the top will be compared with the ultimate compressive strength to determine the design factor based on compression, N_{c} , from

A–13  Typical properties of cast iron.a
Ultimate strength Yield strength
s_{u}^{b} s_{uc}^{c} s_{us}^{c} s_{ut}^{c} Modulus of elasticity. E^{c}
Meterial type and grade ksi MPa ksi MPa ksi MPa ksi MPa psi GPa Percent elogation
Gray iron ASTM A48
Grade 20 20 138 80 552 32 221 12.2 \times 10^{6} 84 <1
Grade 40 40 276 140 965 57 393 19.4 \times 10^{6} 134 <0.8
Grade 60 55 379 170 1170 72 496 21.5 \times 10^{6} 148 <0.5
Ductile iron ASTM A536
60-40-18 60 414 57 393 40 276 24   \times 10^{6} 165 18
80-55-6 80 552 73 503 55 379 24   \times 10^{6} 165 6
100-70-3 100 690 70 483 24   \times 10^{6} 165 3
120-90-2 120 727 180 1240 90 621 23   \times 10^{6} 159 2
Austempered ductile iron (AID)
Grade 1 125 862 80 552 24   \times 10^{6} 165 10
Grade 2 150 1034 100 690 24   \times 10^{6} 165 7
Grade 3 175 1207 125 862 24   \times 10^{6} 165 4
Grade 4 200 1379 155 1069 24   \times 10^{6} 165 1
Malleable iron ASTM A220
45008 65 448 240 1650 49 338 45 310 26  \times 10^{6} 170 8
60004 80 552 240 1650 65 448 60 414 27  \times 10^{6} 186 4
80002 95 655 240 1650 75 517 80 552 27  \times 10^{6} 186 2

σ_{ct}  = s_{us} /N_{c}    and    N_{c}  = s_{uc} / \sigma_{ct}

where s_{uc} = 1650 MPa from Appendix A–13. The lower of the two values of N will be the final design factor for the beam.

Results      At the bottom of the beam,

σ_{tb}  = \frac{Mc_{b}}{I} = \frac{(1025  N·m)(14.04  mm)}{1.80 \times 10^{5}   mm^{4}} \frac{(1000  mm)}{m} = 79.95 MPa

N_{c}  = s_{us} / \sigma_{tb}  = 655 MPa/79.95 MPa = 8.19

At the top of the beam,

σ_{tb}  = \frac{Mc_{t}}{I} = \frac{(1025  N·m)(35.96  mm)}{1.80 \times 10^{5}   mm^{4}} \frac{(1000  mm)}{m} = 204.8 MPa

N_{c}  = s_{us} / \sigma_{ct}  = 1650 MPa/204.8 MPa = 8.06

Comment   The compressive stress at the top of the beam is the limiting value in this problem because the smaller design factor exists there. Note, however, that the two values of the design factor were quite close to being equal, indicating that the shape of the cross section has been reasonably well optimized for the different strengths in tension and compression.

Related Answered Questions