Question C.2.1: Find a functional description of the following data:
Find a functional description of the following data:
\begin{array}{l|llll}x & 1 & 2 & 3 & 4 \\\hline y & 5.1 & 19.5 & 46 & 78\end{array}
Learn more on how we answer questions.
These data do not lie close to a straight line when plotted on linear or semilog axes. However, they do when plotted on log-log axes. Thus a power function y=bx^m can describe the data. Using the transformations X = log x and Y = log y, we obtain the new data table:
\begin{array}{l|llll}X=\log x & 0 & 0.3010 & 0.4771 & 0.6021 \\\hline Y=\log y & 0.7076 & 1.2900 & 1.6628 & 1.8921\end{array}
From this table we obtain
\begin{aligned}\sum_{i=1}^4 X_i=1.3803 & \sum_{i=1}^4 Y_i=5.5525 \\\sum_{i=1}^4 X_i Y_i=2.3208 & \sum_{i=1}^4 X_i^2=0.6807\end{aligned}
Using X, Y, and B = log b instead of x, y, and b in (C.1.1) and (C.1.2), we obtain
\begin{aligned}0.6807 m+1.3803 B &=2.3208 \\1.3803 m+4 B &=5.5525\end{aligned}
The solution is m = 1.9802 and B = 0.7048. This gives b = 10^B = 5.068. Thus, the desired function is y = 5.068x^{1.9802}.