Question 7.6.1: Find a general solution of the system x′ = [9 4 0 -6 -1 0 6 ...
Find a general solution of the system
\textbf{x}^{′} = \left [ \begin{matrix} 9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3 \end{matrix} \right ] \textbf{x}. (5)
Learn more on how we answer questions.
The characteristic equation of the coefficient matrix A in Eq. (5) is
|A – λI| = \left | \begin{matrix} 9-\lambda & 4 & 0 \\ -6 & -1-\lambda & 0 \\ 6 & 4 & 3-\lambda \end{matrix} \right |
= (3 – λ)[(9 -λ)(-1-λ)+24]
= (3 – λ)(15 – 8λ + λ²)
= (5 – λ)(3 – λ)² = 0.
Thus A has the distinct eigenvalue λ_{1} = 5 and the repeated eigenvalue λ_{2} = 3 of multiplicity k = 2.
CASE 1: λ_{1} = 5. The eigenvector equation (A – λI)v = 0, where v = [a b c]^{T} , is
(A – 5I)v = \left [ \begin{matrix} 4 & 4 & 0 \\ -6 & -6 & 0 \\ 6 & 4 & -2 \end{matrix} \right] \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right ] = \left [ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right ] .
Each of the first two equations, 4a + 4b = 0 and -6a – 6b = 0, yields b = -a. Then the third equation reduces to 2a – 2c = 0, so that c = a. The choice a = 1 then yields the eigenvector
\textbf{v}_{1} =[1 -1 1]^{T}
associated with the eigenvalue λ_{1} = 5.
CASE 2: λ_{2} = 3. Now the eigenvector equation is
(A – 3I)v =\left [ \begin{matrix} 6 & 4 & 0 \\ -6 & -4 & 0 \\ 6 & 4 & 0 \end{matrix} \right] \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right ] = \left [ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right ] .
so the nonzero vector \textbf{v}=[a b c]^{T} is an eigenvector if and only if
6a + 4b = 0; (6)
that is, b = -\frac{3}{2}a. The fact that Eq. (6) does not involve c means that c is arbitrary, subject to the condition v ≠ 0. If c = 1, then we may choose a = b = 0; this gives the eigenvector
\textbf{v}_{2} = [0 0 1]^{T}
associated with λ_{2} = 3. If c = 0, then we must choose a to be nonzero. For instance, if a = 2 (to avoid fractions), then b = -3, so
\textbf{v}_{3} =[2 -3 0]^{T}
is a second linearly independent eigenvector associated with the multiplicity 2 eigenvalue λ_{2} = 3. Thus we have found a complete set \textbf{v}_{1}, \textbf{v}_{2}, \textbf{v}_{3} of three eigenvectors associated with the eigenvalues 5, 3, 3. The corresponding general solution of Eq. (5) is
\textbf{x}(t) = c_{1} \textbf{v}_{1} e^{5t} + c_{2}\textbf{v}_{2} e^{3t} + c_{3} \textbf{v}_{3} e^{3t} (7)
= c_{1} \left [ \begin{matrix} 1 \\ -1 \\ 1 \end{matrix} \right ] e^{5t} +c_{2} \left [ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right ] e^{3t} + c_{3} \left [ \begin{matrix} 2 \\ -3 \\ 0 \end{matrix} \right ] e^{3t}.
with scalar component functions given by
x_{1}(t) = c_{1} e^{5t} + 2c_{3} e^{3t} ,
x_{2}(t) = -c_{1} e^{5t} – 3c_{3} e^{3t},
x_{3}(t) = c_{1} e^{5t} + c_{2} e^{3t}.