Question 9.5.1: Find a rotation matrix P with the property that PA has a zer...

Find a rotation matrix P with the property that PA has a zero entry in the second row and first column, where

A=\left[\begin{array}{lll} 3 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 3 \end{array}\right] .

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The form of P is

P=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\-\sin \theta & \cos \theta & 0 \\0 & 0 & 1\end{array}\right] \quad \operatorname{so} P A=\left[\begin{array}{ccc}3 \cos \theta+\sin \theta & \cos \theta+3 \sin \theta & \sin \theta \\-3 \sin \theta+\cos \theta & -\sin \theta+3 \cos \theta & \cos \theta \\0 & 1 & 3\end{array}\right].

The angle θ is chosen so that −3 sin θ + cos θ = 0, that is, so that \tan \theta=\frac{1}{3}  . Hence

\cos \theta=\frac{3 \sqrt{10}}{10} . \quad \sin \theta=\frac{\sqrt{10}}{10}

and

P A=\left[\begin{array}{ccc}\frac{3 \sqrt{10}}{10} & \frac{\sqrt{10}}{10} & 0 \\-\frac{\sqrt{10}}{10} & \frac{3 \sqrt{10}}{10} & 0 \\0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}3 & 1 & 0 \\1 & 3 & 1 \\0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\sqrt{10} & \frac{3}{5} \sqrt{10} & \frac{1}{10} \sqrt{10} \\0 & \frac{4}{5} \sqrt{10} & \frac{3}{10} \sqrt{10} \\0 & 1 & 3\end{array}\right].

Note that the resulting matrix is neither symmetric nor tridiagonal.

Related Answered Questions

Question: 9.6.2

Verified Answer:

We found in Example 1 that A has the singular valu...
Question: 9.6.1

Verified Answer:

We have A^{t}=\left[\begin{array}{lllll}1 &...