Question 5.1: Find how many positive roots the following characteristic eq...

Find how many positive roots the following characteristic equation has:

s^{6}  –  4s^{5}  –  7s^{4} + 44s^{3}  –  214s^{2} + 140s + 400 = 0            (5.150)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The Routh array is as follows:

s^{6} 1 -7 -214 400
s^{5} – 4 44 140 0
s^{4} \frac{(- 7) \times (-4)  – 1 \times 44}{(- 4)} = 4 \frac{(-214) \times (- 4)  – 1 \times 140}{(- 4)} = – 179 \frac{400 \times (- 4)  –  1 \times 0} {(- 4)} = 400 0
\frac{44 \times 4  –  (-  4) \times (-  179)}{4} = –  135 \frac{140 \times 4  –  (-4) \times 400}{4} = 540 0 0
\frac{(- 179) \times (- 135)  –  4 \times 540}{(- 135)} = –  163 \frac{400 \times (- 135)  –  4 \times 0}{(- 135)} = 400 0 0
s \frac{540 \times –  (- 135) \times 400}{(- 163)} = 208.7 0 0 0

There are four changes of sign in the left-hand column indicating four roots with positive real parts. In fact, this example of the characteristic function was generated by expanding the left-hand side of the following equation:

(s +1)(s  –  2)(s + 4)(s  –  5)(s  –  1 + 3j)(s  –  1  –  3j) = 0                                (5.151)

so the roots are – 1, 2, – 4, 5, 1 – 3j and 1 + 3j, with the four roots 2, 5, 1 – 3j and 1 + 3j all having positive real parts. A system with this characteristic equation would clearly be extremely unstable!

Related Answered Questions