Question 7.3.4: Find the amounts x1(t), x2(t), and x3(t) of salt at time t i...

Find the amounts x_{1}(t), x_{2}(t),  and  x_{3}(t) of salt at time t in the three brine tanks of Fig. 7.3.5 if V_{1} = 50 gal, V_{2} = 25 gal, V_{3} = 50 gal, and r = 10 gal/min.

7.3.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With the given numerical values, (22) takes the form

\frac{dx_{1}}{dt} = -k_{1} x_{1} + k_{3} x_{3} ,

\frac{dx_{2}}{dt} = k_{1} x_{1} – k_{2} x_{2},

\frac{dx_{3}}{dt} = k_{2} x_{2} –  k_{3} x_{3},            (22)

\frac{dx}{dt} = \left [ \begin{matrix} -0.2 & 0 & 0.2 \\ 0.2 & -0.4 & 0 \\ 0 & 0.4 & -0.2 \end{matrix} \right ] x,                        (23)

where x = [x_{1}   x_{2}   x_{3}]^{T} as usual. When we expand the determinant of the matrix

A – \lambda \cdot I = \left [ \begin{matrix} -0.2-\lambda & 0.0 & 0.2 \\ 0.2 & -0.4-\lambda & 0.0 \\ 0.0 & 0.4 & -0.2-\lambda \end{matrix} \right ]        (24)

along its first row, we find that the characteristic equation of A is

(-0.2 – λ)(-0.4 – λ)(-0.2 – λ) + (0.2)(0.2)(0.4)

= – λ³ – (0.8) · λ² – (0.2) · λ

= – λ \left [ \begin{matrix} (\lambda + 0.4)^{2} + (0.2)^{2} \end{matrix} \right ] = 0.

Thus A has the zero eigenvalue λ_{0} = 0 and the complex conjugate eigenvalues λ, \bar{λ}  = -0.4 ± (0.2)i . We anticipate one solution corresponding to the zero eigenvalue and two additional  linearly independent solutions corresponding to the complex conjugate eigenvalues.

CASE 1: λ_{0} = 0. Substitution of λ = 0 in Eq. (24) gives the eigenvector equation

(A – 0\cdot I)v = \left [ \begin{matrix} -0.2 & 0.0 & 0.2 \\ 0.2 & -0.4 & 0.0 \\ 0.0 & 0.4 & -0.2 \end{matrix} \right ] \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right ] =\left [ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right ]           (25)

for v = [a     b     c]^{T} . The first row gives a = c and the second row gives a = 2b, so v_{0} = [2    1    2]^{T} is an eigenvector associated with the eigenvalue λ_{0} = 0. The corresponding solution x_{0}(t) = v_{0} e^{λ_{0}t} of Eq. (23) is the constant solution

x_{0}(t) = \left [ \begin{matrix} 2 \\ 1 \\ 2 \end{matrix} \right ] .                    (26)

CASE 2: λ = – 0.4 – (0.2)i . Substitution of λ = – 0.4 – (0.2)i in Eq. (24) gives the eigenvector equation

[A – (-0.4 – (0.2)i) I]v = \left [ \begin{matrix} 0.2+(0.2)i & 0.0 & 0.2 \\ 0.2 & (0.2)i & 0.0 \\ 0.0 & 0.4 & 0.2+(0.2)i \end{matrix} \right ] \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right ] =\left [ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right ] .

The second equation (0.2)a + (0.2)ib = 0 is satisfied by a = 1 and b = i . Then the first equation

[0.2 + (0.2)i ] a + (0.2)c = 0

gives c = -1 – i . Thus, v = [ 1     i     (- 1 – i )]^{T} is a complex eigenvector associated with the complex eigenvalue λ = – 0.4 – (0.2)i . The corresponding complex-valued solution x(t) = v e^{λ_{t}} of (23) is

x(t) = [1     i     -1 – i]^{T}  e^{(-0.4 – 0.2i)t}

= [1      i        – 1 – i]^{T} e^{(-0.4)t }(cos  0.2t  –  i  sin  0.2t )

e^{(-0.4)t}  \left [ \begin{matrix} cos 0.2t -i sin 0.2t \\ sin 0.2t + i cos 0.2t\\ -cos 0.2t – sin 0.2t – i cos 0.2t + i sin 0.2t \end{matrix} \right ] .

The real and imaginary parts of x(t) are the real-valued solutions

x_{1}(t) = e^{(-0.4)t} \left [ \begin{matrix} cos 0.2t \\ sin 0.2t\\ -cos 0.2t – sin 0.2t \end{matrix} \right ] .

x_{2}(t) = e^{(-0.4)t} \left [ \begin{matrix} -sin 0.2t \\ cos 0.2t\\ -cos 0.2t +  sin 0.2t \end{matrix} \right ] .                   (27)

The general solution

x(t) = c_{0} x_{0}(t) +  c_{1} x_{1}(t) + c_{2} x_{2}(t)

has scalar components

x_{1}(t) = 2 c_{0} + e^{(-0.4)t}  (c_{1}  cos 0.2t  –  c_{2}   sin 0.2t ),

x_{2}(t) = c_{0} + e^{(-0.4)t} (c_{1}   sin 0.2t + c_{2}  cos 0.2t ),

x_{3}(t) = 2 c_{0} + e^{(-0.4)t} [(-c_{1}  –  c_{2}) cos 0.2t + (- c_{1} + c_{2}) sin 0.2t ]                         (28)

giving the amounts of salt in the three tanks at time t .
Observe that

x_{1}(t) + x_{2}(t) + x_{3}(t) ≡ 5c_{0}.                    (29)

Of course, the total amount of salt in the closed system is constant; the constant c_{0} in (29) is one-fifth the total amount of salt. Because of the factors of e^{(-0.4)t} in (28), we see that

lim_{t → \infty}{x_{1}(t) = 2c_{0}},     lim_{t → \infty}{x_{2}(t) = c_{0}},          and          lim_{t → \infty}{x_{3}(t) = 2c_{0}}.

Thus, as t → + \infty the salt in the system approaches a steady-state distribution with 40% of the salt in each of the two 50-gallon tanks and 20% in the 25-gallon tank. So whatever the initial distribution of salt among the three tanks, the limiting distribution is one of uniform concentration throughout the system. Figure 7.3.6 shows the graphs of the three solution functions with c_{0} = 10, c_{1} = 30,  and  c_{2} = – 10, in which case

x_{1}(0) = 50   and    x_{2}(0) = x_{3}(0) = 0.

7.3.6

Related Answered Questions

Question: 7.6.3

Verified Answer:

In Example 2 we found that the coefficient matrix ...
Question: 7.6.1

Verified Answer:

The characteristic equation of the coefficient mat...
Question: 7.4.13

Verified Answer:

Although we could directly apply the eigenvalue/ei...
Question: 7.4.12

Verified Answer:

The coefficient matrix A = \begin{bmatrix} ...
Question: 7.4.11

Verified Answer:

The coefficient matrix A = \begin{bmatrix}...
Question: 7.6.4

Verified Answer:

The characteristic equation of the coefficient mat...
Question: 7.3.3

Verified Answer:

The coefficient matrix A = \begin{bmatrix} ...
Question: 7.3.1

Verified Answer:

The matrix form of the system in (9) is x^...