Question 8.7: Find the distance between earth and Mars at 12 h UT on Augus...

Find the distance between earth and Mars at 12 h UT on August 27, 2003. Use Algorithm 8.1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1:
According to Eq. (5.48), the Julian day number J_0 for midnight (0h UT) of this date is

J_0=367 y-\operatorname{INT}\left\{\frac{7\left[y+\operatorname{INT}\left(\frac{m+9}{12}\right)\right]}{4}\right\}+\operatorname{INT}\left(\frac{275 m}{9}\right)+d+1,721,013.5                           (5.48)

J_0=367 \cdot 2003-\operatorname{INT}\left\{\frac{7\left[2003+\operatorname{INT}\left(\frac{8+9}{12}\right)\right]}{4}\right\}+\operatorname{INT}\left(\frac{275 \cdot 8}{9}\right)+27+1,721,013.5

= 735,101 – 3507 + 244 + 27 + 1,721,013.5

= 2,452,878.5

At UT = 12, the Julian day number is

J D=2,452,878.5+\frac{12}{24}=2,452,879.0

Step 2:
The number of Julian centuries between J2000 and this date is

T_0=\frac{J D-2,451,545}{36,525}=\frac{2,452,879-2,451,545}{36,525}=0.036523  Cy

Step 3:
Table 8.1 and Eq. (8.93b) yield the orbital elements of earth and Mars at 12 h UT on August 27, 2003:

a (km) e i(°) Ω (°) ϖ (°) L (°)
Earth 1.4960\left(10^8\right) 0.016710 -0.00048816 0.0 102.95 335.27
Mars 2.2794\left(10^8\right) 0.093397 1.8494 49.549 336.07 334.51

Q=Q_0+\dot{Q} T_0                        (8.93b)

Table 8.1 Planetary orbital elements and their centennial rates

a (AU) \dot{a}( AU / Cy ) e \dot{e}(1 / Cy ) i (°) i(° / Cy ) Ω(°) \dot{ \Omega} (° / Cy ) ϖ (°) \dot{\varpi}(° / Cy ) L(°) \dot{L}(° / Cy )
Mercury 0.38709927 0.20563593 7.00497902 48.33076593 77.45779628 252.25032350
0.00000037 0.00001906 -0.00594749 -0.12534081 0.16047689 149,472.67411175
Venus 0.72333566 0.00677672 3.39467605 76.67984255 131.6024672 181.97909950
0.00000390 -0.00004107 -0.00078890 -0.27769418 0.00268329 58,517.81538729
Earth 1.00000261 0.01671123 -0.00001531 0.0 102.9376819 100.46457166
0.00000562 -0.00004392 -0.01294668 0.0 0.32327364 35,999.37244981
Mars 1.52371034 0.09339410 1.84969142 49.55953891 -23.94362959 -4.55343205
0.0001847 0.00007882 -0.00813131 -0.29257343 0.44441088 19,140.30268499
Jupiter 5.20288700 0.04838624 1.30439695 100.4739091 14.72847983 34.39644501
-0.00011607 -0.00013253 -0.00183714 0.20469106 0.21252668 3034.74612775
Saturn 9.53667594 0.05386179 2.48599187 113.6624245 92.59887831 49.95424423
-0.00125060 -0.00050991 0.00193609 -0.28867794 -0.41897216 1222.49362201
Uranus 19.18916464 0.04725744 0.77263783 74.01692503 170.95427630 313.23810451
-0.00196176 -0.00004397 -0.00242939 0.04240589 0.40805281 428.48202785
Neptune 30.06992276 0.00859048 1.77004347 131.7842257 44.96476227 -55.12002969
0.00026291 0.00005105 0.00035372 -0.00508664 -0.32241464 218.45945325
(Pluto) 39.48211675 0.24882730 17.14001206 110.3039368 224.0689163 238.92903833
-0.00031596 0.00005170 0.00004818 -0.01183482 -0.04062942 145.20780515
Reproduced with permission from Standish et al. (2013).

Step 4:

h_{\text {earth }}=4.4451\left(10^9\right)  km ^2 / s

h_{\text {Mars }}=5.4760\left(10^9\right)  km ^2 / s

Step 5:

\omega_{\text {earth }}=(\varpi-\Omega)_{\text {earth }}=102.95-0=102.95^{\circ}

\omega_{\text {Mars }}=(\varpi-\Omega)_{\text {Mars }}=336.07-49.549=286.52^{\circ}

M_{\text {earth }}=(L-\varpi)_{\text {earth }}=335.27-102.95=232.32^{\circ}

M_{\text {Mars }}=(L-\varpi)_{\text {Mars }}=334.51-336.07=-1.56^{\circ}\left(358.43^{\circ}\right)

Step 6:

E_{\text {earth }}-0.016710 \sin E_{\text {earth }}=232.32^{\circ}(\pi / 180) \Rightarrow E_{\text {earth }}=231.57^{\circ}

E_{\text {Mars }}-0.093397 \sin E_{\text {Mars }}=358.43^{\circ}(\pi / 180) \Rightarrow E_{\text {Mars }}=358.27^{\circ}

Step 7:

\theta_{\text {earth }}=2 \tan ^{-1}\left(\sqrt{\frac{1+0.016710}{1-0.016710}} \tan \frac{231.57^{\circ}}{2}\right)=-129.18 \Rightarrow \theta_{\text {earth }}=230.8^{\circ}

\theta_{\text {Mars }}=2 \tan ^{-1}\left(\sqrt{\frac{1+0.093397}{1-0.093397}} \tan \frac{358.27^{\circ}}{2}\right)=-1.8998^{\circ} \Rightarrow \theta_{\text {Mars }}=358.10^{\circ}

Step 8:
From Algorithm 4.5,

R _{\text {earth }}=(135.59 \hat{ I }-66.803 \hat{ J }-0.00056916 \hat{ K })\left(10^6\right)  ( km )

V _{\text {earth }}=(12.680 \hat{ I }-26.610 \hat{ J }-0.00022672 \hat{ K })  ( km / s )

R _{\text {Mars }}=(185.95 \hat{ I }-89.959 \hat{ J }-6.4534 \hat{ K })\left(10^6\right)  ( km )

V _{\text {Mars }}=11.478 \hat{ I }-23.881 \hat{ J }-0.21828 \hat{ K }  ( km )

The distance d between the two planets is therefore

d=\left\| R _{\text {Mars }}- R _{\text {earth }}\right\|

=\sqrt{(185.95-135.59)^2+[-89.959-(-66.803)]^2+(-6.4534-0.00056916)^2}\left(10^6\right)

or

d=55.80\left(10^6\right)  km

The positions of earth and Mars are illustrated in Fig. 8.26. It is a rare event for Mars to be in opposition (lined up with earth on the same side of the sun) when Mars is at or near perihelion. The two planets had not been this close in recorded history.

90307.8.26

Related Answered Questions

Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...