Question 6.1.5: Find the eigenvalues and a basis for each eigenspace of A =[...

Find the eigenvalues and a basis for each eigenspace of

A=\left[\begin{array}{rrr}1 & -3 & 3 \\2 & -2 & 2 \\2 & 0 & 0\end{array}\right]

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We determine the eigenvalues of A by calculating the characteristic polynomial,

\operatorname{det}\left(A-\lambda I_3\right)=\left|\begin{array}{ccc}(1-\lambda) & -3 & 3 \\2 & (-2-\lambda) & 2 \\2 & 0 & (0-\lambda)\end{array}\right|=-\lambda^3-\lambda^2+2 \lambda=-\lambda(\lambda+2)(\lambda-1)

Hence the eigenvalues are \lambda_1=-2, \lambda_2=0, and \lambda_3=1.aking them in order, the eigenvectors associated with \lambda_1=-2 are found by solving the homogeneous system \left(A+2 I_3\right) u=0. The augmented matrix and echelon form are

\left[\begin{array}{rrrr}3 & -3 & 3 & 0 \\2 & 0 & 2 & 0 \\2 & 0 & 2 & 0\end{array}\right] \underset{\substack{\sim}}{\begin{aligned}R_1 \Leftrightarrow R_2 \\-\frac{3}{2}R_1+R_2 \Rightarrow R_2 \\-R_1+R_3 \Rightarrow R_3\end{aligned}}\left[\begin{array}{rrrr}2 & 0 & 2 & 0 \\0 & -3 & 0 & 0 \\0 & 0 & 0 & 0\end{array}\right]

Back substitution gives us

General Solution: u _1=s\left[\begin{array}{r}1 \\0 \\-1\end{array}\right]  ⇒  Basis for Eigenspace of \lambda_1=-2:\left\{\left[\begin{array}{r}1 \\0 \\-1\end{array}\right]\right\}

For λ_2 = 0, the homogeneous system is (A−0· I_2)u = Au = 0. The augmented matrix and echelon form are

\left[\begin{array}{crrr}1 & -3 & 3 & 0 \\2 & -2 & 2 & 0 \\2 & 0 & 0 & 0\end{array}\right] \underset{\substack{\sim}}{\begin{aligned}-2 R_1+R_2 \Rightarrow R_2 \\-2 R_1+R_3 \Rightarrow R_3 \\-\frac{3}{2}R_2+R_3 \Rightarrow R_3\end{aligned}}\left[\begin{array}{rrrr}1 & -3 & 3 & 0 \\0 & 4 & -4 & 0 \\0 & 0 & 0 & 0\end{array}\right]

This time back substitution yields

General Solution: u _2=s\left[\begin{array}{l}0 \\1 \\1\end{array}\right]  ⇒ Basis for Eigenspace of \lambda_2=0:\left\{\left[\begin{array}{l}0 \\1 \\1\end{array}\right]\right\}

The final eigenvalue is λ_3 = 1. The homogeneous system is (A − I_3)u = 0, and the augmented matrix and echelon form are

\left[\begin{array}{rrrr}0 & -3 & 3 & 0 \\2 & -3 & 2 & 0 \\2 & 0 & -1 & 0\end{array}\right] \underset{\substack{\sim}}{\begin{aligned}R_1 \Leftrightarrow R_3 \\-R_1+R_2 \Rightarrow R_2 \\-R_2+R_3 \Rightarrow R_3\end{aligned}}\left[\begin{array}{rrrr}2 & 0 & -1 & 0 \\0 & -3 & 3 & 0 \\0 & 0 & 0 & 0\end{array}\right]

With back substitution, we find

General Solution: u _3=s\left[\begin{array}{l}1 \\2 \\2\end{array}\right]  ⇒  Basis for Eigenspace of \lambda_3=1:\left\{\left[\begin{array}{l}1 \\2 \\2\end{array}\right]\right\}

Related Answered Questions

Question: 6.2.4

Verified Answer:

We start by setting B=A-4 I_5=\left[\begin{...
Question: 6.2.3

Verified Answer:

Here we apply the Power Method to A^{-1}=\f...
Question: 6.1.8

Verified Answer:

From the Big Theorem, Version 8, λ = 0 is an eigen...
Question: 6.1.7

Verified Answer:

The characteristic polynomial of A is \oper...
Question: 6.1.6

Verified Answer:

We start out by finding the eigenvalues for A by c...
Question: 6.1.4

Verified Answer:

We start by finding the eigenvalues of A by comput...
Question: 6.1.3

Verified Answer:

Our strategy is to determine the values of λ that ...