Question 5.1.2: Find the eigenvalues and corresponding eigenvectors of A = [...

Find the eigenvalues and corresponding eigenvectors of
A = \begin{bmatrix} 2&-12 \\1&-5 \end{bmatrix}

Give a description of the eigenspace corresponding to each eigenvalue

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

By Theorem 1 to find the eigenvalues, we solve the characteristic equation
det(A − λI) = \begin{vmatrix} 2 − λ & −12\\ 1 &−5 − λ \end{vmatrix}

= (2 − λ)(−5 − λ) − (1)(−12)
= λ² + 3λ + 2
= (λ + 1)(λ + 2) = 0

Thus, the eigenvalues are \lambda _{1} = −1  and  \lambda _{2} = −2 . To find the eigenvectors, we need to find all nonzero vectors in the null spaces of A − \lambda _{1} I  and  A − \lambda _{2} I. First, for \lambda _{1} = −1,

A − \lambda _{1} I = A + I = \begin{bmatrix} 2&-12 \\1&-5 \end{bmatrix}+ \begin{bmatrix} 1&0 \\0&1 \end{bmatrix}=\begin{bmatrix} 3&-12 \\1&-4 \end{bmatrix}

The null space of A + I is found by row-reducing the augmented matrix

\left[\begin{array}{r | c}\begin{matrix} 3&-12 \\ 1&-4 \end{matrix}& \begin{matrix} 0 \\ 0 \end{matrix} \end{array}\right]  \quad to \quad \left[\begin{array}{r | c}\begin{matrix} 1&-4 \\ 0&0 \end{matrix}& \begin{matrix} 0 \\ 0 \end{matrix} \end{array}\right]

The solution set for this linear system is given by  S= \left\{\left.\begin{matrix}\begin{bmatrix}4t\\t\end{bmatrix}\end{matrix}\right| t  ∈  R\right \}. Choosing t = 1, we obtain the eigenvector v_{ 1} = \begin{bmatrix} 4\\ 1 \end{bmatrix} Hence, the eigenspace corresponding to \lambda _{1} = −1 is

V_{\lambda 1} = \left\{ t \left.\begin{matrix}\begin{bmatrix}4\\t\end{bmatrix}\end{matrix}\right| t \text{  is any real number}\right \}

For \lambda _{2} = −2,

A − \lambda _{2} I = \begin{bmatrix} 4&-12 \\1&-3 \end{bmatrix}

In a similar way we find that the vector v_{ 2} = \begin{bmatrix} 3 \\1 \end{bmatrix}is an eigenvector corresponding to \lambda _{2} = −2. The corresponding eigenspace is

V_{\lambda 2} = \left\{ t \left.\begin{matrix}\begin{bmatrix}3\\1\end{bmatrix}\end{matrix}\right| t \text{  is any real number}\right \}

The eigenspaces V_{\lambda 1}  and  V_{\lambda 2} are lines in the direction of the eigenvectors \begin{bmatrix} 4 \\ 1 \end{bmatrix}  and  \begin{bmatrix} 3 \\ 1 \end{bmatrix} respectively. The images of the eigenspaces, after multiplication by A, are the same lines, since the direction vectors A\begin{bmatrix} 4 \\ 1 \end{bmatrix} and A \begin{bmatrix} 3 \\ 1 \end{bmatrix} are scalar multiples of \begin{bmatrix} 4 \\ 1 \end{bmatrix} and\begin{bmatrix} 3 \\ 1 \end{bmatrix} respectively.

Related Answered Questions

Question: 5.1.3

Verified Answer:

The characteristic equation of A is det(A −...
Question: 5.2.5

Verified Answer:

The characteristic equation for A is det(A − λI) =...
Question: 5.2.4

Verified Answer:

Recall that the matrix A is symmetric if and only ...
Question: 5.2.3

Verified Answer:

To find the eigenvalues of A, we solve the charact...
Question: 5.2.2

Verified Answer:

Since A is a triangular matrix, by Proposition 1 o...
Question: 5.2.1

Verified Answer:

The inverse matrix is given by P^{-1}= \beg...