Question 5.1.3: Find the eigenvalues of A= [ 1 0 0 0 0 1 5 -10 1 0 2 0 1 0 0...

Find the eigenvalues of

 A =\begin{bmatrix} 1&0&0&0 \\0&1&5&-10 \\ 1&0&2&0\\ 1&0&0&3 \end{bmatrix}

and find a basis for each of the corresponding eigenspaces

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The characteristic equation of A is

det(A − λI) = \begin{vmatrix} 1 − λ & 0&0&0\\ 0 &1− λ & 5&-10 \\ 1&0& 2 − λ & 0\\ 1&0&0& 3 − λ \end{vmatrix} = (λ − 1)²(λ − 2)(λ − 3) = 0

Thus, the eigenvalues are

\lambda _{1} = 1            \lambda _{2} =2             and             \lambda _{3} = 3

Since the exponent of the factor λ − 1 is 2, we say that the eigenvalue \lambda _{1} = 1 has algebraic multiplicity 2. To find the eigenspace for \lambda _{1} = 1, we reduce the matrix

A − (1)I = \begin{bmatrix} 0&0&0&0 \\0&0&5&-10 \\ 1&0&1&0\\ 1&0&0&2 \end{bmatrix}  to  \begin{bmatrix} 1&0&0&2 \\0&0&1&-2 \\ 0&0&0&0\\ 0&0&0&0 \end{bmatrix}

Hence, the eigenspace corresponding to \lambda _{1} = 1 is

V_{1} = \left\{s\begin{bmatrix} 0 \\ 1 \\0\\0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\2\\1 \end{bmatrix}  |s,t ∈R \right\}

Observe that the two vectors

\begin{bmatrix} 0 \\ 1 \\0\\0 \end{bmatrix}   and   \begin{bmatrix} -2 \\ 0 \\2\\1 \end{bmatrix}

are linearly independent and hence form a basis for V_{\lambda 1}. Since dim(V_{\lambda 1} ) = 2, we say that \lambda _{1} has geometric multiplicity equal to 2. Alternatively, we can write

V_{\lambda 1} =span \left\{\begin{bmatrix} 0 \\ 1\\0\\0 \end{bmatrix} ,\begin{bmatrix} -2 \\ 0\\2\\1 \end{bmatrix}  \right\}

Similarly, the eigenspaces corresponding to \lambda _{2} = 2  and  \lambda _{3} = 3 are, respectively,

V_{\lambda 2} =span \left\{\begin{bmatrix} 0 \\ 5\\1\\0 \end{bmatrix} \right\}             and                V_{\lambda 3} =span \left\{\begin{bmatrix} 0 \\ -5\\0\\1 \end{bmatrix}  \right\}

Related Answered Questions

Question: 5.2.5

Verified Answer:

The characteristic equation for A is det(A − λI) =...
Question: 5.2.4

Verified Answer:

Recall that the matrix A is symmetric if and only ...
Question: 5.2.3

Verified Answer:

To find the eigenvalues of A, we solve the charact...
Question: 5.2.2

Verified Answer:

Since A is a triangular matrix, by Proposition 1 o...
Question: 5.2.1

Verified Answer:

The inverse matrix is given by P^{-1}= \beg...