Question 3.7: Find the first two natural frequencies of the following syst...

Find the first two natural frequencies of the following system model with the given accuracy ε of 0.001:

[M]{ü} + [K]{u} = 0                                                     (3.105)

where

[M]=\begin{bmatrix} 20 & 5 & 0 \\ 5 & 10 & 5 \\ 0 & 5 & 10 \end{bmatrix} , [K]=\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation (3.105) can be turned into an eigenvalue problem with three DoF (N = 3) as.

[K]\left\{u\right\}-\lambda _{i} [M]\left\{u\right\}=0 where \lambda _{i}=w^{2}_{i}          (3.106)

Since the first two natural frequencies (M = 2) of the system model is interested, let assume that an initial vector as \left\{{u}\right\} _{2\times 3} , i.e.,

[u]_{23}=[u_{1} u_{2} ]=\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}

Let i = 1 and [X_{1}]= [u]_{23} to initialize the iterative process.

Iteration 1. Solving the equation set [K][Y_{i} ] = [M][X_{i} ] yields

[Y_{i}]=\begin{bmatrix} 25 & 20 \\ 30 & 35 \\ 30 & 40 \end{bmatrix}

The reduced eigenvalue problem at this iteration becomes

[K]^{*}[u]^{*}-\lambda [M]^{*}[u]^{*} =0

where

[K]^{*}=[Y_{i} ]^{T}[K][Y_{i} ] =\begin{bmatrix} 650 & 575 \\ 575 & 650 \end{bmatrix}

[M]^{*}=[Y_{i} ]^{T}[M][Y_{i} ] =1.0\times 10^{4} \begin{bmatrix} 4.7 & 5.1125 \\ 5.1125 & 5.725 \end{bmatrix}

The eigenvalues and eigenvectors of the above reduced problem can be found as

\lambda _{1}= 0.1052,  \lambda _{2}= 0.0113,  and  [u]^{*}=\begin{bmatrix} 0.7455 & 0.0450 \\ -0.6665 & 0.9990 \end{bmatrix}

Next, [X_{i} ] can be updated as

[X_{i}]=normc([Y_{i} ][u]^{*} )=normc\left\lgroup\begin{bmatrix} 5.3075 & 21.1040 \\ -0.9625 & 36.3137 \\ -4.295 & 41.3087 \end{bmatrix} \right\rgroup = \begin{bmatrix} 0.7697 & 0.3582 \\ -0.1396 & 0.6164 \\ -0.6229 & 0.7012 \end{bmatrix}

Iteration 2. Solving the equation set [K][Y_{i} ]= [M][X_{i} ] with the updated [X_{i} ] yields

[Y_{i} ]= \begin{bmatrix} 7.1085 & 31.8025 \\-0.4800 & 53.3581 \\ -7.4069 & 63.4522 \end{bmatrix}

The reduced eigenvalue problem at this iteration becomes

[K]^{*} [u]^{*}-\lambda [M]^{*}[u]^{*} =0

where

[K]^{*}=[Y_{i} ]^{T}[K][Y_{i} ]= \begin{bmatrix}650 & 575 \\ 575 & 650 \end{bmatrix}

[M]^{*}=[Y_{i} ]^{T}[M][Y_{i} ] =1.0\times 10^{4} \begin{bmatrix} 4.7 & 5.1125 \\ 5.1125 & 5.725 \end{bmatrix}

The eigenvalues and eigenvectors of the above reduced problem can be found as

\lambda _{1}= 0.1052,  \lambda _{2}= 0.0113,  and  [u]^{*}=\begin{bmatrix} 1.000 & -0.0069 \\ 0.0054 & 1.0000 \end{bmatrix}

Next, [X_{i} ] can be updated as

[X_{i}]=normc([Y_{i} ][u]^{*} )=normc\left\lgroup\begin{bmatrix} 7.2799 & 31.7526 \\ -0.1923 & 53.3601 \\ -7.0647 & 63.5019 \end{bmatrix} \right\rgroup = \begin{bmatrix} 0.7175 &0.3575 \\ -0.0190 & 0.6008 \\ -0.6963 & 0.7150 \end{bmatrix}

Check the convergence: max\left(\left|\frac{\lambda ^{i+ 1}_{1}-\lambda^{i+ 1}_{1} }{\lambda^{i+ 1}_{1}} \right|,\left|\frac{\lambda^{i+ 1}_{1}-\lambda^{i+ 1}_{1} }{\lambda^{i+ 1}_{1}} \right| \right) =0.05>ε ; therefore, the iteration has to be continued.

Iteration 3. Solving the equation set [K][Y_{i} ] = [M][X_{i} ] with the updated [X_{i} ] yields

[Y_{i} ]=\begin{bmatrix} 7.1139 & 31.6789 \\ -0.0274 & 53.2034 \\ -7.0852 & 63.3574 \end{bmatrix}

The reduced eigenvalue problem at this iteration becomes

[K]^{*} [u]^{*}-\lambda [M]^{*}[u]^{*} =0

where

[K]^{*}=[Y_{i} ]^{T}[K][Y_{i} ] =1.0\times 10^{3} \begin{bmatrix} 0.1514 & -0.0000 \\ -0.0000 & 1.5700 \end{bmatrix}

[M]^{*}=[Y_{i} ]^{T}[M][Y_{i} ] =1.0\times 10^{5} \begin{bmatrix} 0.0151 & -0.0000 \\ -0.0000 & 1.3908 \end{bmatrix}

The eigenvalues and eigenvectors of the above reduced problem can be found as

\lambda _{1}= 0.1001,  \lambda _{2}= 0.0113,  and  [u]^{*}=\begin{bmatrix} 1.000 & -0.000 \\ 0.000 & 1.0000 \end{bmatrix}

Next, [X_{i} ] can be updated as

[X_{i}]=normc([Y_{i} ][u]^{*} )=normc\left\lgroup\begin{bmatrix}7.1143 & 31.6788 \\ -0.0267 & 53.2034 \\ -7.0844 & 63.3575 \end{bmatrix} \right\rgroup = \begin{bmatrix} 0.7086 &0.3576 \\ -0.0027 & 0.6006 \\ -0.7056 & 0.7152 \end{bmatrix}

Check the convergence: max\left(\left|\frac{\lambda ^{i+ 1}_{1}-\lambda ^{i}_{1} }{\lambda ^{i+ 1}_{1}} \right|,\left|\frac{\lambda ^{i+ 1}_{2}-\lambda ^{i}_{2} }{\lambda ^{i+ 1}_{2}} \right|\right) <\epsilon . The convergence condition is satisfied.
Finally, the first two natural frequencies are found as w_{1} = 0.3164 and w_{2} = 0.1063.

 

Related Answered Questions

Question: 3.3

Verified Answer:

The solid domain in Fig. 3.17a is decomposed into ...