Question 9.2: Find the Fourier series of the function f (x) = 4x, 0 ≤ x ≤...

Find the Fourier series of the function

f (x) = 4x,   0 ≤ x ≤ 10,    with period               2l = 10, l = 5.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The Fourier coefficients are

a_{0} = \frac{1}{5} \int\limits_{0}^{10}{4x  dx} = \frac{2}{5} x^{2}|^{10}_{0}= 40,

 

a_{n} = \frac{1}{5} \int\limits_{0}^{10}{4x  cos\frac{nπx}{5} dx} = \frac{4x}{nπ} cos\frac{nπx}{5}|^{10}_{0} − \frac{4}{nπ}  \int\limits_{0}^{10}{sin \frac{nπx}{5}dx}

 

= 0+ \frac{20}{n^{2}π^{2}} cos\frac{nπx}{5}|^{10}_{0}= 0,

 

b_{n} = \frac{4}{5} \int\limits_{0}^{10}{x  sin \frac{nπx}{5} dx} =−\frac{4x}{nπ} cos\frac{nπx}{5}|^{10}_{0}+\frac{4}{nπ}  \int\limits_{0}^{10}{cos\frac{nπx}{5}dx}

 

=−\frac{40}{nπ} + \frac{20}{n^{2}π^{2}}  sin \frac{nπx}{5}|^{10}_{0}=−\frac{40}{nπ}.

Hence, the Fourier series reads

f (x) = 20−\frac{40}{π} \sum\limits_{n=1}^{∞}{\frac{1}{n} sin \frac{nπx}{5}}.

The first partial sums S_{n} of this series are drawn in Fig. 9.2. A comparison of this series with the starting curve f (x) illustrates the convergence of this Fourier series.

9.2

Related Answered Questions