Question 3.2: Find the function corresponding to the Fourier transform g(k...
Find the function corresponding to the Fourier transform g(k) shown in Fig. 3.13.

Learn more on how we answer questions.
The transform g(k) in the figure is equal to g in the interval k_{0} − \Delta k ≤ k ≤ k_{0} + \Delta k , and it is zero otherwise. Using Eq. (3.90), we get
ψ(x) =\frac{1}{\sqrt{2\pi } }\int_{-\infty }^{\infty }g(k)e^{ikx} dk. (3.90)
ψ(x) =\frac{g}{\sqrt{2\pi } }\int_{k_{0}-\Delta k }^{k_{0}+\Delta k } e^{ikx}dk.
The integral in this equation may be evaluated by defining the change of variable
u = ikx.
Solving this last equation for k in terms of u and taking the differential dk, we obtain
\begin{matrix}k=\frac{u}{i x}, & dk=\frac{du}{i x}\end{matrix}
The expression for ψ(x) can thus be written
ψ(x) = \frac{g}{\sqrt{2\pi } }· \frac{1}{ix} \int_{ix(k_{0}-\Delta k)}^{ix(k_{0}+\Delta k)} e^{u}d u = \frac{g}{\sqrt{2\pi } }· \frac{1}{ix} \left[e^{ix(k_{0}+\Delta k)}-e^{ix(k_{0}-\Delta k)}\right].
The exponential function e^{i k_{0} x} may be factored from the term within square brackets giving
ψ(x) = \frac{g}{\sqrt{2\pi } }· \frac{1}{ix}e^{ik_{0}x} \left[e^{i\Delta k x}-e^{-i\Delta k x}\right].
Finally, using Eq. (3.10) which expresses the sine function in terms of exponentials, we obtain
\sin (k x)=\frac{e^{i k x }- e^{- i k x}}{2i} (3.10)
ψ(x) = \left[\frac{2g}{\sqrt{2\pi } } \frac{\sin \Delta k x}{x} \right]e ^{ik_{0}x} (3.92)