Question 11.2.5: Find the general solution in powers of x of (x² - 4)y″ + 3xy...

Find the general solution in powers of x of

(x² – 4)y″ + 3xy^{′} + y = 0.                            (7)

Then find the particular solution with y(0) = 4, y^{′}(0) = 1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The only singular points of Eq. (7) are ±2, so the series we get will have radius of convergence at least 2. (See Problem 35 for the exact radius of convergence.) Substitution of

y = \sum\limits_{n=0}^{\infty}{c_{n} x^{n}} ,   y^{′} = \sum\limits_{n=1}^{\infty}{n c_{n} x^{n-1}},        and    y″ = \sum\limits_{n=2}^{\infty}{n(n – 1)c_{n} x^{n-2}}

in Eq. (7) yields

\sum\limits_{n=2}^{\infty}{n(n – 1)c_{n} x^{n } – 4}  \sum\limits_{n=2}^{\infty}{n(n – 1)c_{n} x^{n-2}}  + 3 \sum\limits_{n=1}^{\infty}{n c_{n} x^{n}} + \sum\limits_{n=0}^{\infty}{c_{n} x^{n}} = 0.

We can begin the first and third summations at n = 0 as well, because no nonzero terms are thereby introduced. We shift the index of summation in the second sum by + 2, replacing n with n + 2 and using the initial value n = 0. This gives

\sum\limits_{n=0}^{\infty}{n(n – 1)c_{n} x^{n} } – 4 \sum\limits_{n=0}^{\infty}{(n + 2)(n + 1)c_{n+2} x^{n}} + 3 \sum\limits_{n=0}^{\infty}{n c_{n} x^{n}} + \sum\limits_{n=0}^{\infty}{c_{n} x^{n}} = 0.

After collecting coefficients of c_{n}   and   c_{n+2}, we obtain

\sum\limits_{n=0}^{\infty}{[(n² + 2n + 1)c_{n} – 4(n + 2)(n + 1)c_{n+2}]x^{n} }= 0.

The identity principle yields

(n + 1)²c_{n} – 4(n + 2)(n + 1)c_{n+2} = 0.

which leads to the recurrence relation

c_{n+2} = \frac{(n + 1)c_{n}}{4(n + 2)}           (8)

for n 0. With n = 0, 2, and 4 in turn, we get

c_{2} = \frac{c_{0}}{4 · 2},    c_{4} = \frac{3c_{2}}{4 · 4} = \frac{3c_{0}}{4² · 2 · 4},        and    c_{6} = \frac{5c_{4}}{4 · 6} = \frac{3 · 5c_{0}}{4³ · 2 · 4 · 6}.

Continuing in this fashion, we evidently would find that

c_{2n} = \frac{1 · 3 · 5 · · · (2n – 1)}{4^{n} · 2 · 4· · ·(2n)}c_{0}.

With the common notation

(2n + 1)!! = 1 · 3 · 5 · · · (2n + 1) = \frac{(2n + 1)!}{2^{n} · n!}

and the observation that 2 · 4 · 6 · · ·(2n) = 2^{n} ·  n!, we finally obtain

c_{2n} = \frac{(2n – 1)!!}{2^{3n} · n!}c_{0}.              (9)

(We also used the fact that 4^{n} · 2^{n} = 2^{3n}.)
With n = 1, 3, and 5 in Eq. (8), we get

c_{3} = \frac{2c_{1}}{4 · 3},     c_{5} = \frac{4c_{3}}{4 · 5} = \frac{2 · 4c_{1}}{4²·  3 · 5},      and     c_{7} = \frac{6c_{5}}{4 · 7} = \frac{2 · 4 · 6c_{1}}{4³ · 3 · 5 · 7}.

It is apparent that the pattern is

c_{2n+1} = \frac{2 · 4 · 6 · · ·(2n)}{4^{n} · 1 · 3 · 5· · ·(2n + 1)}c_{1} = \frac{n!}{2^{n} · (2n + 1)!!}c_{1}.                     (10)

The formula in (9) gives the coefficients of even subscript in terms of c_{0}; the formula in (10) gives the coefficients of odd subscript in terms of c_{0}. After we separately collect the terms of the series of even and odd degree, we get the general solution

y(x) = c_{0}(1 + \sum\limits_{n=1}^{\infty}{\frac{(2n – 1)!!}{2^{3n} · n!} x^{2n}}) + c_{1}(x + \sum\limits_{n=1}^{\infty}{\frac{n!}{2^{n} · (2n + 1)!!}x^{2n+1}})           (11)

Alternatively,

y(x) = c_{0}(1 + \frac{1}{8} x² + \frac{3}{128}x^{4} + \frac{5}{1024}x^{6} + · · ·) +  c_{1}(x + \frac{1}{6}x^{3} + \frac{1}{30}x^{5} + \frac{1}{140}x^{7} + · · ·).              (11′)

Because y(0) = c_{0}   and   y^{′}(0) = c_{1}, the given initial conditions imply that c_{0} = 4   and   c_{1} = 1. Using these values in Eq. (11′), the first few terms of the particular solution satisfying y(0) = 4   and  y^{′}(0) = 1 are

y(x) = 4 + x + \frac{1}{2}x^{2} + \frac{1}{6} x^{3} + \frac{3}{32}x^{4} + \frac{1}{30}x^{5} + · · ·.               (12)

Related Answered Questions

Question: 11.1.4

Verified Answer:

If we assume a solution of the form y = \su...
Question: 11.1.3

Verified Answer:

We make the usual substitutions y = \sum{c_...
Question: 11.1.2

Verified Answer:

As before, we substitute y = \sum\limits_{n...
Question: 11.1.1

Verified Answer:

We substitute the series y = \sum\limits_{n...
Question: 11.3.5

Verified Answer:

In the form of (17), Eq. (28) becomes y^{″}...
Question: 11.3.4

Verified Answer:

First we divide each term by 2x² to put the equati...
Question: 11.2.7

Verified Answer:

We make the usual substitution of the power series...
Question: 11.2.6

Verified Answer:

We need a general solution of the form \sum...
Question: 11.3.6

Verified Answer:

In standard form the equation becomes y″ +\...