Question 13.1: Find the kinetic energy of an electron moving with velocity ...

Find the kinetic energy of an electron moving with velocity (a) v = 1.00 × 10^{−4} c, (b) v = 0.9 c.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since the velocity v = 1.00 × 10^{−4} c is far less than 11.5 percent the speed of light, we use the classical expression for the kinetic energy. We may write

KE =\frac{1}{2}  mv²= \frac{1}{2}  mc²(\frac{v}{c} )^{2}=\frac{1}{2}mc^{2}(1.00\times 10^{-4})^{2}.

Here the term  mc² is the rest energy of the electron. Using the value 0.511  MeV given in Appendix A, we obtain

KE =2.56\times 10^{-3} eV.

Appendix A
Constants and conversion factors
Constants
Speed of light c 2.99792458 × 10^{8} m/s
Charge of electron e 1.6021773 × 10^{−19} C
Plank’s constant h 6.626076 × 10^{−34} J s
4.135670 × 10^{−15}  eV s
\hbar=h/2π 1.054573 × 10^{−34}  J s
6.582122 × 10^{−16}  eV s
hc 1239.8424 eV nm
1239.8424 MeV fm
Hydrogen ionization energy 13.605698 eV
Rydberg constant 1.0972 × 10^{5} cm^{−1}
Bohr radius  a_{0} = (4π \epsilon _{0})/(me²) 5.2917725 × 10^{−11} m
Bohr magneton μ_{B} 9.2740154 × 10^{−24}  J/T
5.7883826 × 10^{−5}  eV/T
Nuclear magneton μ_{N} 5.0507865 × 10^{−27}  J/T
3.1524517 × 10^{−8}  eV/T
Fine structure constant α = e^{2}/(4π\epsilon _{0} c  \hbar) 1/137.035989
e^{2}/4π\epsilon _{0} 1.439965 eV nm
Boltzmann constant k 1.38066 × 10^{−23}  J/K
8.6174 × 10^{−5}  eV/K
Avogadro’s constant N_{A} 6.022137 × 10^{23}  mole
Stefan-Boltzmann constant σ 5.6705 × 10^{−8}  W/m² K^{4}
Particle masses
kg u MeV/c²
Electron  9.1093897 × 10^{−31}  5.485798 × 10^{−4} 0.5109991
Proton  1.6726231 × 10^{−27} 1.00727647 938.2723
Neutron  1.674955 × 10^{−27} 1.008664924 939.5656
Deuteron  3.343586 × 10^{−27} 2.013553 1875.6134
Conversion factors
1 eV  1.6021773 × 10^{−19}   J
1 u 931.4943  MeV/c²
 1.6605402 × 10^{−27}   kg
1 atomic unit 27.2114  eV

(b) Since the velocity v = 0.9 c is close to the speed of light, we use Eq. (13.13) in this case to obtain

KE = E − R = (γ − 1)  mc²,     (13.13)

KE =\left(\frac{1}{\sqrt{1-(0.9)^{2}} }-1.0 \right) (0.511 \ MeV) = 0.661   MeV.

The kinetic energy of the electron is now greater than its rest energy.

Related Answered Questions