Question 8.5: Find the kinetic energy of the antenna system in Example 8.3...
Find the kinetic energy of the antenna system in Example 8.3, page 314.
Learn more on how we answer questions.
The center of mass C of the two coil system has velocity v* = v_o , and m(β) =2m; so, by (8.51), the kinetic energy of the center of mass is
K^*(\beta, t) \equiv \frac{1}{2} m(\beta) \mathbf{v}^* \cdot \mathbf{v}^* (8.51)
K^*(\beta, t)=m v_O^2. (8.54a)
The velocity of each coil relative to C is given in (8.48b); therefore, by (8.52), the kinetic energy of the system relative to C is
\dot{\rho}_1=-\dot{\rho}_2=-\mathbf{v} + \omega_f \times \mathbf{d}=-v \mathbf{i} + \omega d \mathbf{j} (8.48b)
K_{r C}(\beta, t) \equiv \sum_{k=1}^n \frac{1}{2} m_k \dot{\boldsymbol{\rho}}_k \cdot \dot{\boldsymbol{\rho}}_k (8.52)
K_{r C}=\frac{1}{2} m\left(\dot{\rho}_1 \cdot \dot{\rho}_1 + \dot{\rho}_2 \cdot \dot{\rho}_2\right)=m\left(v^2 + \omega^2 d^2\right) (8.54b)
Finally, (8.53) yields the kinetic energy of the antenna coil system:
K(\beta, t)=K^*(\beta, t) + K_{r C}(\beta, t) . (8.53)
K(\beta, t)=m\left(v_O^2 + v^2 + \omega^2 d^2\right) . (8.54c)
The reader will find the same result on starting from (8.50).
K(\beta, t) \equiv \sum_{k=1}^n K_k(t)=\sum_{k=1}^n \frac{1}{2} m_k \mathbf{v}_k \cdot \mathbf{v}_k, (8.50)