Question 11.10: Find the moments of inertia of the rod in Example 11.5 (Fig....

Find the moments of inertia of the rod in Example 11.5 (Fig. 11.15) about its center of mass G.

90307.11.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Example 11.5,

\left[ I _A\right]=\left[\begin{array}{ccc}\frac{1}{3} m\left(b^2+c^2\right) & -\frac{1}{3} m a b & -\frac{1}{3} m a c \\-\frac{1}{3} m a b & \frac{1}{3} m\left(a^2+c^2\right) & -\frac{1}{3} m b c \\-\frac{1}{3} m a c & -\frac{1}{3} m b c & \frac{1}{3} m\left(a^2+b^2\right)\end{array}\right]

Using Eq. (11.62)_1 and noting the coordinates of the center of mass in Fig. 11.15,

I_{G_x}=I_{A_x}-m\left[\left(y_G-0\right)^2+\left(z_G-0\right)^2\right]=\frac{1}{3} m\left(b^2+c^2\right)-m\left[\left(\frac{b}{2}\right)^2+\left(\frac{c}{2}\right)^2\right]=\frac{1}{12} m\left(b^2+c^2\right)

I_{P_x}=I_{G_x}+m\left(y_{G / P}^2+z_{G / P}^2\right)                        (11.62)_1

Eq. (11.62)_4 yields

I_{G_{x y}}=I_{A_{x y}}+m\left(x_G-0\right)\left(y_G-0\right)=-\frac{1}{3} m a b+m \cdot \frac{a}{2} \cdot \frac{b}{2}=-\frac{1}{12} m a b

I_{P_{x y}}=I_{G_{y y}}-m x_{G / P} y_{G / P}                    (11.62)_4

The remaining four moments of inertia are found in a similar fashion, so that

\left[ I _G\right]=\left[\begin{array}{ccc}\frac{1}{12} m\left(b^2+c^2\right) & -\frac{1}{2} m a b & -\frac{1}{12} m a c \\-\frac{1}{12} m a b & \frac{1}{12} m\left(a^2+c^2\right) & -\frac{1}{12} m b c \\-\frac{1}{12} m a c & -\frac{1}{12} m b c & \frac{1}{12} m\left(a^2+b^2\right)\end{array}\right]                      (11.63)

Related Answered Questions

Question: 11.12

Verified Answer:

Since the comoving frame is rigidly attached to th...
Question: 11.21

Verified Answer:

\hat{ p } \otimes \hat{ q } =\left\{\frac{p...