Question 13.15: Find the response of the system of Example 13.9 using the ce...
Find the response of the system of Example 13.9 using the central difference method. In the integration of the equation corresponding to degree-of-freedom 1 , use a time step b while for the equation corresponding to degree-of-freedom 2 use a time step h / 2. Select b=0.1 \mathrm{~s}.
Learn more on how we answer questions.
As in Example 13.14, the iteration equation corresponding to degree-of-freedom 1 is
200 u_{1}^{n+1}=304 u_{1}^{n}+32 u_{2}^{n}-200 u_{1}^{n-1}
or
u_{1}^{n+1}=1.52 u_{1}^{n}+0.16 u_{2}^{n}-u_{1}^{n-1} \qquad (a)
The equation for degree-of-freedom 2 is obtained from Equation 13.128
with m=2.
400 u_{2}^{n+p / 2}=100+(800-32) u_{2}^{n+(p-1) / 2}+32 u_{1}^{n+(p-1) / 2}-400 u_{2}^{n+(p-2) / 2}
or
u_{2}^{n+p / 2}=0.25+1.92 u_{2}^{n+(p-1) / 2}+0.08 u_{1}^{n+(p-1) / 2}-u_{2}^{n+(p-2) / 2} \qquad (b)
The initial conditions are u_{1}^{0}=0, \dot{u}_{1}^{0}=0, \ddot{u}_{1}^{0}=0, u_{2}^{0}=0, \dot{u}_{2}^{0}=0, \ddot{u}_{2}^{0}=100. To start the iteration for degree-of-freedom 1 , we need u_{1}^{-1}. This is obtained from Equation 13.108:
\mathbf{u}_{-1}=\mathbf{u}_0+\frac{h^2}{2} \ddot{\mathbf{u}}_0-b \dot{\mathbf{u}}_0 \qquad (13.108)
\begin{aligned}u_{1}^{-1} &=u_{1}^{0}-b \dot{u}_{1}^{0}+\frac{h^{2}}{2} \ddot{u}_{1}^{0} \\&=0\end{aligned} \qquad (c)
The first step in the iteration corresponding to n=0 gives
\begin{aligned}u_{1}^{1} &=1.52 u_{1}^{0}+0.16 u_{2}^{0}-u_{1}^{-1} \\&=0\end{aligned} \qquad (d)
To start the iteration for degree-of-freedom 2 , we need u_{2}^{-1 / 2}. This is obtained from an equation similar to Equation c but with h replaced by h / m=h / 2 :
\begin{aligned}u_{2}^{-1 / 2} &=u_{2}^{0}-\frac{h}{2} \dot{u}_{2}^{0}+\frac{h^{2}}{8} \ddot{u}_{2}^{0} \\&=\frac{0.1^{2}}{8} \times 100=0.125 \qquad (e)\end{aligned}
The first substep in the iteration, obtained by substituting n=0 and p=1 in Equation \mathrm{b}, is
\begin{aligned}u_{2}^{1 / 2} &=0.25+1.92 u_{2}^{0}+0.08 u_{1}^{0}-u_{2}^{-1 / 2} \\&=0.25-0.125=0.125 \qquad (f) \end{aligned}
Before we carry out the second substep of iteration with n=0 and p=2, we will need u_{1}^{1 / 2}. This is obtained by linear interpolation between u_{1}^{0} and u_{1}^{1} :
\begin{aligned}u_{1}^{1 / 2} &=0.5\left(u_{1}^{0}+u_{1}^{1}\right) \\&=0\end{aligned} \qquad (g)
We now write Equation \mathrm{b} with n=0 and p=2 :
\begin{aligned}u_{2}^{1} &=0.25+1.92 u_{2}^{1 / 2}+0.08 u_{1}^{1 / 2}-u_{2}^{0} \\&=0.25+1.92 \times 0.125+0.08 \times 0 \\&=0.49\end{aligned} \qquad (h)
Table E13.15 Response of a two-degree-of-freedom system obtained by mixed explicit-explicit integration method, h=0.1 \mathrm{~s}.
\begin{array}{lrc}\hline Time & u_{1} & u_{2} \\\hline 0.1 & 0.000 & 0.490 \\0.2 & 0.078 & 1.809 \\0.3 & 0.409 & 3.576 \\0.4 & 1.115 & 5.344 \\0.5 & 2.141 & 6.779 \\0.6 & 3.224 & 7.742 \\0.7 & 3.999 & 8.255 \\0.8 & 4.174 & 8.390 \\0.9 & 3.689 & 8.156 \\1.0 & 2.738 & 7.483 \\1.1 & 1.670 & 6.296 \\1.2 & 0.808 & 4.647 \\1.3 & 0.307 & 2.789 \\1.4 & 0.010 & 1.142 \\1.5 & 0.003 & 0.153 \\1.6 & -0.029 & 0.105 \\1.7 & -0.056 & 0.997 \\1.8 & 0.104 & 2.545 \\1.9 & 0.621 & 4.323 \\2.0 & 1.532 & 5.934 \\ \hline\end{array}
The second step in the iteration for u_{1} is
\begin{aligned}u_{1}^{2} &=1.52 u_{1}^{1}+0.16 u_{2}^{1}-u_{1}^{0} \\&=1.52 \times 0+0.16 \times 0.49 \\&=0.078\end{aligned} \qquad (i)
Also,
\begin{aligned}u_{1}^{3 / 2} &=0.5\left(u_{1}^{1}+u_{1}^{2}\right) \\&=0.039\end{aligned}\qquad (j)
We can now carry out two substeps of iteration for u_{2}.
\begin{aligned}u_{2}^{3 / 2} &=0.25+1.92 u_{2}^{1}+0.08 u_{1}^{1}-u_{2}^{1 / 2} \\&=0.25+1.92 \times 0.49+0.08 \times 0-0.125=1.0658 \qquad (k)\end{aligned}
2 \quad n=1, p=2:\begin{aligned}u_{2}^{2} &=0.25+1.92 u_{2}^{3 / 2}+0.08 u_{1}^{3 / 2}-u_{2}^{1} \\&=0.25+1.92 \times 1.0658+0.08 \times 0.039-0.49=1.809 \qquad (l)\end{aligned}
The response obtained by the procedure outlined above is shown in Table E13.15 for the first 2 \mathrm{~s} at intervals of 0.1 \mathrm{~s}.