Question 13.11: Find the response of the system of Example 13.9 using the li...

Find the response of the system of Example 13.9 using the linear acceleration method and a time step h of (a) 0.1 \mathrm{~s}, and (b) 0.5 \mathrm{~s}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The initial conditions are the same as in Examples 13.9 and 13.10. Equations 13.115, 13.113, and 13.114

\begin{aligned}&\left(\frac{6}{b^2} \mathbf{M}+\frac{3}{b} \mathbf{C}+\mathbf{K}\right) \mathbf{u}_{n+1}=\mathbf{p}_{n+1}+\mathbf{M}\left(\frac{6}{b^2} \mathbf{u}_n+\frac{6}{b} \dot{\mathbf{u}}_n+2 \ddot{\mathbf{u}}_n\right) \\&+\mathbf{C}\left(\frac{3}{b} \mathbf{u}_n+2 \dot{\mathbf{u}}_n+\frac{h}{2} \ddot{\mathbf{u}}_n\right) \qquad \qquad \qquad \qquad \qquad \qquad (13.115)\\&\ddot{\mathbf{u}}_{n+1}=-2 \ddot{\mathbf{u}}_n+\frac{6}{h^2}\left(\mathbf{u}_{n+1}-\mathbf{u}_n-h \dot{\mathbf{u}}_n\right) \qquad (13.113) \\&\dot{\mathbf{u}}_{n+1}=-2 \dot{\mathbf{u}}_n-\frac{h}{2} \ddot{\mathbf{u}}_n+\frac{3}{b}\left(\mathbf{u}_{n+1}-\mathbf{u}_n\right) \qquad (13.114)\end{aligned}

are used in the iterations. For b=0.1 \mathrm{~s} these equations reduce to the following

\begin{aligned}&\left\{600\left[\begin{array}{ll}2 & 0 \\0 & 1\end{array}\right]+\left[\begin{array}{rr}96 & -32 \\-32 & 32\end{array}\right]\right\} \mathbf{u}_{n+1}=\left[\begin{array}{c}0 \\100\end{array}\right]+\left[\begin{array}{ll}2 & 0 \\0 & 1\end{array}\right]\left(600 \mathbf{u}_{n}+60 \dot{\mathbf{u}}_{n}+2 \ddot{\mathbf{u}}_{n}\right)  \qquad (a)\\&\ddot{\mathbf{u}}_{n+1}=-2 \ddot{\mathbf{u}}_{n}+600\left(\mathbf{u}_{n+1}-\mathbf{u}_{n}-0.1 \dot{\mathbf{u}}_{n}\right) \qquad (b) \\&\dot{\mathbf{u}}_{n+1}=-2 \dot{\mathbf{u}}_{n}-0.05 \ddot{\mathbf{u}}_{n}+30\left(\mathbf{u}_{n+1}-\mathbf{u}_{n}\right) \qquad (c)\end{aligned}

The response results obtained from Equations a, b, and c are presented in Table E13.11a for the first 2 \mathrm{~s}. Again, the results are reasonably close to the exact values shown in Table E13.9a.

(b) The stability criterion requires that h be less than 0.55 times the second mode period. The limiting value of h is thus given by

\begin{aligned}h &<0.55 \frac{2 \pi}{8} \\&=0.432 \mathrm{~s}\end{aligned}

Table E13.11a Response of a two-degree-of-freedom system by the linear acceleration method, h=0.1 \mathrm{~s}.
\begin{array}{lcc}\hline Time & u_{1} & u_{2} \\\hline 0.1 & 0.012 & 0.475 \\0.2 & 0.109 & 1.763 \\0.3 & 0.430 & 3.510 \\0.4 & 1.081 & 5.286 \\0.5 & 2.027 & 6.750 \\0.6 & 3.060 & 7.732 \\0.7 & 3.867 & 8.233 \\0.8 & 4.165 & 8.330 \\0.9 & 3.837 & 8.081 \\1.0 & 2.993 & 7.465 \\1.1 & 1.913 & 6.428 \\1.2 & 0.926 & 4.973 \\1.3 & 0.257 & 3.255 \\1.4 & 0.426 & 1.593 \\1.5 & 0.076 & 0.398 \\1.6 & 0.004 & 0.014 \\1.7 & 0.107 & 0.577 \\1.8 & 0.268 & 1.950 \\1.9 & 0.610 & 3.771 \\2.0 & 1.232 & 5.595 \\\hline\end{array}

The selected value of h does not satisfy this requirement. The response obtained with h=0.5 \mathrm{~s} is therefore expected to be unstable. The response for the first 10 \mathrm{~s} shown in Table E13.11b. As expected, the results are unbounded.

Related Answered Questions