Question 19.14: Find the transmission parameters for the circuit in Fig. 19....
Find the transmission parameters for the circuit in Fig. 19.46.

Learn more on how we answer questions.
We can regard the given circuit in Fig. 19.46 as a cascade connection of two T networks as shown in Fig. 19.47(a). We can show that a T network, shown in Fig. 19.47(b), has the following transmission parameters [see Prob. 19.52(b)]:
\pmb{A} =1+\frac{R_1}{R_2}, \quad \pmb{B} =R_3+\frac{R_1\left(R_2+R_3\right)}{R_2} \\ \space \\ \pmb{C} =\frac{1}{R_2}, \quad \pmb{D} =1+\frac{R_3}{R_2}
Applying this to the cascaded networks N_a \text{ and } N_b in Fig. 19.47(a), we get
\pmb{A_a} = 1 + 4 = 5, \quad \pmb{B_a} = 8 + 4 × 9 = 44 Ω \\ \space \\ \pmb{C_a} = 1 S, \quad \pmb{D_a} = 1 + 8 = 9
or in matrix form,
\left[ \pmb{T _a}\right]=\left[\begin{array}{cc} 5 & 44 \Omega \\ 1 S & 9 \end{array}\right]
and
\pmb{A _b}=1, \quad \pmb{B _b}=6 \Omega, \quad \pmb{C _b}=0.5 S , \quad \pmb{D _b}=1+\frac{6}{2}=4
i.e.,
\left[ \pmb{T _b}\right]=\left[\begin{array}{cc} 1 & 6 \Omega \\ 0.5 S & 4 \end{array}\right]
Thus, for the total network in Fig. 19.46,
[\pmb{ T} ]=\left[ \pmb{T _a}\right]\left[ \pmb{T _b}\right]=\left[\begin{array}{cc} 5 & 44 \\ 1 & 9 \end{array}\right]\left[\begin{array}{cc} 1 & 6 \\ 0.5 & 4 \end{array}\right] \\ \space \\=\left[\begin{array}{cc} 5 \times 1+44 \times 0.5 & 5 \times 6+44 \times 4 \\ 1 \times 1+9 \times 0.5 & 1 \times 6+9 \times 4 \end{array}\right] \\ \space \\=\left[\begin{array}{cc} 27 & 206 \Omega \\ 5.5 S & 42 \end{array}\right]
Notice that
\Delta_{T_a}=\Delta_{T_b}=\Delta_T=1
showing that the network is reciprocal.
