Question 9.17: Find the value of x and draw S.F.D. and B.M.D. for the beam ...

Find the value of x and draw S.F.D. and B.M.D. for the beam shown as shown in Fig. 9.25.
Take RA = 1000  N and RB = 4000  N.

(U.P.T.U. IInd Sem, 2000−01)

Screenshot 2022-08-09 235826
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\sum M_{A}=0,

R_{B} \times(2+x)=1000 \times(3+x)+(2000 \times 2)(x+1)

4000 (2 + x) = 3000 + 1000x + 4000x + 4000

8000 + 4000x = 7000 + 5000x

\quad1000 = 1000x

x = 1 m

Shear Force Diagram:

(S F)_{X_{1} X_{1}^{1}}=+1000  N

(S F)_{D}=(S F)_{B}=+1000  N

(S F)_{x_{2} x_{2}^{1}}=+1000-4000+2000\left(x_{2}-1\right)

(S F)_{B}=−3000  N

(S F)_{C}= 1000 – 4000 + 2000 (3 − 1)

\quad= 1000 N

(S D)_{x_{3} x_{3}^{1}}=+1000-4000+(2000 \times 2)

= +1000 N

(S F)_{C}=(S F)_{A}=+1000  N

Note in portion BC, (S.F.) changes its sign and let it is zero at point E which is at distance ‘a’ from point D. Using equation (S F)_{X_{2} X_{2}^{1}} ,

(S F)_{E}=1000 – 4000 + 2000 (a − 1)

0 = −3000 + 2000 (a − 1)
a = 2.5 m

Bending Moment Diagram:

(B M)_{x_{1} x_{1}^{1}}=-1000 \cdot x_{1}

(B M)_{D}=0,(B M)_{B}=-1000  Nm

(B M)_{x_{2} x_{2}^{1}}=-1000 \cdot x_{2}+4000\left(x_{2}-1\right)-2000\left(x_{2}-1\right) \frac{\left(x_{2}-1\right)}{2}

(B M)_{B}=-1000  Nm

(B M)_{C}=-1000 \times 3+4000(3-1)-2000 \frac{(3-1)^{2}}{2}

= +1000 Nm

(B M)_{E}=-1000 \times 2.5+4000(2.5-1)-2000 \frac{(2.5-1)}{2}

= +1250 Nm

(B M)_{X_{3} x_{3}^{1}}=-1000 \cdot x_{3}+4000\left(x_{3}-1\right)-(2000 \times 2)\left(x_{3}-2\right)

(B M)_{C}=−1000 × 3 + 4000 (3 – 1) – 4000 (3 − 2)

= 1000 Nm

(B M)_{A}=−1000 × 4000 (4 − 1) – 4000 (4 − 2)

= 0

To determine Point of Contraflexure,

Put (B M)_{X_{2} X_{2}^{1}}=0

-1000 \cdot x_{2}+4000\left(x_{2}-1\right)-2000 \frac{\left(x_{2}-1\right)^{2}}{2}=0

-x_{2}+4\left(x_{2}-1\right)-\frac{2\left(x_{2}-1\right)^{2}}{2}=0

-x_{2}+4 x_{2}-4-\left(x_{2}^{2}+1-2 x_{2}\right)=0

+3 x_{2}-4-x_{2}^{2}-1+2 x_{2}=0

-x_{2}^{2}+5 x_{2}-5=0

x_{2}^{2}-5 x_{2}-5=0

x_{2}=\frac{+5 \pm \sqrt{(+5)^{2}-4 \times 1 \times 5}}{2},

x_{2}=\frac{5 \pm \sqrt{5}}{2}

x_{2}=3.62 m and 1.38 m where first value does not lie for x_{2} as shown in BMD, thus
x_{2}= 1.38 m

Related Answered Questions

Question: 9.1

Verified Answer:

First, support reactions are to be determined. Con...
Question: 9.19

Verified Answer:

hTe figure can be modified about point B where Cou...
Question: 9.18

Verified Answer:

\Sigma Y =0, R_{A} + R_{B}=150 + 50...
Question: 9.16

Verified Answer:

\Sigma Y =0, R_{B} + R_{C}= 6 + (15 \times ...
Question: 9.13

Verified Answer:

Shear Force Diagram: (S F)_{X_{1} X_{1}^{1}...