Question 7.6.4: Find three linearly independent solutions of the system x′ =...

Find three linearly independent solutions of the system

x^{′} = \left [ \begin{matrix} 0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0 \end{matrix} \right ] x.                           (25)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The characteristic equation of the coefficient matrix in Eq. (25) is

|A – λI| = \left [ \begin{matrix} -λ & 1 & 2 \\ -5 & -3-λ & -7 \\ 1 & 0 & -λ \end{matrix} \right ]

=1 · [-7 – 2 · (-3 – λ)] + (-λ)[(-λ)(-3 – λ)+ 5]

= -λ³ -3λ² -3λ – 1 = -(λ + 1)³ = 0,

and thus A has the eigenvalue λ = -1 of multiplicity 3. The eigenvector equation (A – λI)v =0 for an eigenvector v = [a     b     c]^{T}is

(A + I)v = \left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right ] =\left [ \begin{matrix} 0 \\ 0 \\0 \end{matrix} \right ].

The third row a + c = 0 gives c = -a; then the first row a + b + 2c = 0 gives b = a. Thus, to within a constant multiple, the eigenvalue λ = -1 has only the single associated eigenvector v =[a        a        -a]^{T} with a ≠ 0, and so the defect of λ = -1 is 2. To apply the method described here for triple eigenvalues, we first calculate

(A + I)² = \left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ]= \left [ \begin{matrix} -2 & -1 & -3 \\ -2 & -1 & -3 \\ 2 & 1 & 3 \end{matrix} \right ]

and

(A + I)³ = \left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} -2 & -1 & -3 \\ -2 & -1 & -3 \\ 2 & 1 & 3 \end{matrix} \right ] = \left [ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right ].

Thus any nonzero vector v_{3} will be a solution of the equation (A +I)³ v_{3} = 0. Beginning with v_{3} = [1    0    0]^{T} , for instance, we calculate

v_{2} = (A + I)v_{3} =\left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right ] = \left [ \begin{matrix} 1 \\ -5 \\ 1 \end{matrix} \right ] ,

v_{1} = (A + I)v_{2}=\left [ \begin{matrix} 1 & 1 & 2 \\ -5 & -2 & -7 \\ 1 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 \\ -5 \\ 1 \end{matrix} \right ] = \left [ \begin{matrix} -2 \\ -2 \\ 2 \end{matrix} \right ].

Note that v_{1} is the previously found eigenvector v with a = -2; this agreement serves as a check of the accuracy of our matrix computations. Thus we have found a length 3 chain {v_{1}, v_{2}, v_{3}} of generalized eigenvectors associated with the triple eigenvalue λ = -1. Substitution in (24) now yields the linearly independent solutions

x_{1}(t) = v_{1} e^{-t} = \left [ \begin{matrix} -2 \\ -2 \\ 2 \end{matrix} \right ]e^{-t},

x_{2}(t) = (v_{1} t + v_{2}) e^{-t} = \left [ \begin{matrix} -2t + 1 \\ -2t – 5 \\ 2t + 1 \end{matrix} \right ]e^{-t},

x_{3}(t) = (\frac{1}{2} v_{1} t^{2} + v_{2}t + v_{3})e^{-t} = \left [ \begin{matrix} -t^{2} + t + 1 \\ -t^{2} – 5t \\ t^{2} + t \end{matrix} \right ]e^{-t}

of the system x^{′} = Ax.

Related Answered Questions

Question: 7.6.3

Verified Answer:

In Example 2 we found that the coefficient matrix ...
Question: 7.6.1

Verified Answer:

The characteristic equation of the coefficient mat...
Question: 7.4.13

Verified Answer:

Although we could directly apply the eigenvalue/ei...
Question: 7.4.12

Verified Answer:

The coefficient matrix A = \begin{bmatrix} ...
Question: 7.4.11

Verified Answer:

The coefficient matrix A = \begin{bmatrix}...
Question: 7.3.3

Verified Answer:

The coefficient matrix A = \begin{bmatrix} ...
Question: 7.3.1

Verified Answer:

The matrix form of the system in (9) is x^...