Question 5.5.5: Finding an angle given its cosine In each case find the angl...
Finding an angle given its cosine
In each case find the angle α to the nearest tenth of a degree, given that 0° < α < 180°.
.a. cos α = 0.23 b. cos α = -0.82
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
a. Since \cos ^{-1}(0.23) is the unique angle in [0°, 180°] with a cosine of 0.23, \alpha=\cos ^{-1}(0.23) \approx 76.7^{\circ}
b. Use a calculator to get \alpha=\cos ^{-1}(-0.82) \approx 145.1^{\circ}
Figure 5.78 shows how to find \cos ^{-1}(0.23) on a graphing calculator and how to check. Make sure that the mode is degrees.

Related Answered Questions
Question: 5.6.7
Verified Answer:
Let y represent the height of the tower and x repr...
Question: 5.6.9
Verified Answer:
Let x be the radius of the circle and w be the dis...
Question: 5.6.8
Verified Answer:
Figure 5.90 shows the line of sight to the horizon...
Question: 5.6.6
Verified Answer:
Let y represent the height of the antenna, as show...
Question: 5.6.5
Verified Answer:
.a. Since 123.4° has four significant digits, we r...
Question: 5.5.8
Verified Answer:
a. Since \tan (0)=0, \tan ^{-1}(0)=0[/late...
Question: 5.5.7
Verified Answer:
a. Use the inverse sine function in radian mode to...
Question: 5.5.3
Verified Answer:
a. The value of \sin ^{-1}(0.88) i...
Question: 5.4.6
Verified Answer:
Since
\begin{aligned} y &=\csc (2 x-2 ...
Question: 5.4.5
Verified Answer:
Since
y=2 \sec \left(x-\frac{\pi}{2}\right...