Question 7.5.6: Finding Function Values Using Identities Evaluate each expre...

Finding Function Values Using Identities

Evaluate each expression without using a calculator.

(a) \cos (\arctan \sqrt{3} + \arcsin \frac{1}{3} )               (b) \tan (2 \arcsin \frac{2}{5})
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Let A = \arctan \sqrt{3}  and B = \arcsin\frac{1}{3} . Therefore, \tan A = \sqrt{3}  and \sin B = \frac{1}{3} . Sketch both A and B in quadrant I, as shown in Figure 25, and use the Pythagorean theorem to find the unknown side in each triangle.

\cos (\arctan\sqrt{3} +\arcsin\frac{1}{3} )           Given expression

= \cos(A + B)                               Let A = \arctan\sqrt{3}  and B = \arcsin \frac{1}{3}.

= \cos A \cos B – \sin A \sin B         Cosine sum identity

= \frac{1}{2} •\frac{2 \sqrt{2}}{3} – \frac{\sqrt{3}}{2} • \frac{1}{3}                               Substitute values using Figure 25.

= \frac{2\sqrt{2} – \sqrt{3}}{ 6}                                       Multiply and write as a single fraction.

(b) Let B = \arcsin\frac{2}{5}  , so that \sin B = \frac{2}{5}.  Sketch angle B in quadrant I, and use the Pythagorean theorem to find the length of the third side of the triangle.

See Figure 26.

\tan (2 \arcsin \frac{2}{5})       Given expression

=\frac{ 2 (\frac{ 2}{\sqrt{21}} )}{ 1 – (\frac{ 2}{\sqrt{21}})²}              Use \tan 2B = \frac{2 \tan B}{1 – \tan² B}  with

\tan B = \frac{2}{\sqrt{21}}  from Figure 26.

= \frac{\frac{4}{\sqrt{21} } }{1-\frac{4}{21} }                   Multiply and apply the exponent.

=\frac{\frac{4}{\sqrt{21} } • \frac{\sqrt{21} }{\sqrt{21} } }{\frac{17}{21} }             Rationalize in the numerator.

Subtract in the denominator.

= \frac{\frac{4\sqrt{21}}{21 }  }{\frac{17}{21} }                 Multiply in the numerator.

= \frac{4\sqrt{21}}{17}                   Divide; \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} ÷ \frac{c}{d} = \frac{a}{b} • \frac{d}{c} .

25
26

Related Answered Questions

Question: 7.6.4

Verified Answer:

We multiply the factors on the left and subtract 1...
Question: 7.6.5

Verified Answer:

We must rewrite the equation in terms of a single ...
Question: 7.7.4

Verified Answer:

Isolate one inverse function on one side of the eq...
Question: 7.6.3

Verified Answer:

\tan² x + \tan x - 2 = 0           ...
Question: 7.6.2

Verified Answer:

\sin θ \tan θ = \sin θ             ...