Question 4.5.3: Finding the Complex Zeros of a Polynomial Function Given tha...

Finding the Complex Zeros of a Polynomial Function

Given that 2 – i is a zero of P(x)=x46x3+14x214x+5 P(x)=x^{4}-6 x^{3}+14 x^{2}-14 x+5 , find the remaining zeros.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Because P(x) has real coefficients, the conjugate 2i=2+i \overline{2-i}=2+i is also a zero. By the Factorization Theorem, the linear factors [x(2i)] and [x(2+i)] [x-(2-i)] \text { and }[x-(2+i)] appear in the factorization of P(x). Consequently, their product

[x(2i)][x(2+i)]=(x2+i)(x2i)=[(x2)+i][(x2)i] Regroup. =(x2)2i2(A+B)(AB)=A2B2=x24x+4+1 Expand (x2)2,i2=1=x24x+5 Simplify. \begin{aligned}{[x-(2-i)][x-(2+i)] } &=(x-2+i)(x-2-i) \\&=[(x-2)+i][(x-2)-i] \quad \text { Regroup. } \\&=(x-2)^{2}-i^{2} \quad(A+B)(A-B)=A^{2}-B^{2} \\&=x^{2}-4 x+4+1 \quad \text { Expand }(x-2)^{2}, i^{2}=-1 \\&=x^{2}-4 x+5 \quad \text { Simplify. }\end{aligned}

is also a factor of P(x). We divide P(x) by x²-4 x+5 to find the other factor.

Divisorx24x+5)x46x3+14x214x+5DividendQuotientx22x+1\text{Divisor} \rightarrow x^{2}-4 x+5 ) \overset{x^{2}-2 x+1} {\overline{x^{4}-6 x^{3}+14 x^{2}-14 x+5} \overset{\leftarrow \text{Quotient}}{\leftarrow \text{Dividend}} }

x44x3+5x22x3+9x214x2x3+8x210xx24x+5x24x+5oRemainder\begin {aligned} x^{4}-4 x^{3}+5 x^{2} \\ \hline \\ \quad -2 x^{3}+9 x^{2}-14 x \\ -2 x^{3}+8 x^{2}-10 x \\ \hline \\ x^{2}-4 x+5 \\ x^{2}-4 x+5 \\ \hline \\ o \leftarrow \text{Remainder} \end {aligned}

P(x)=(x22x+1)(x24x+5)P(x)= Quotient =(x1)(x1)(x24x+5) Factor x22x+1=(x1)(x1)[x(2i)][x(2+i)] Factor x24x+5\begin{aligned}P(x) &=\left(x^{2}-2 x+1\right)\left(x^{2}-4 x+5\right) & & P(x)=\text { Quotient } \\&=(x-1)(x-1)\left(x^{2}-4 x+5\right) & & \text { Factor } x^{2}-2 x+1 \\&=(x-1)(x-1)[x-(2-i)][x-(2+i)] & & \text { Factor } x^{2}-4 x+5\end{aligned}

The zeros of P(x) are 1 (of multiplicity 2), 2 – i, and 2 + i.

Related Answered Questions

Question: 4.3.2

Verified Answer:

Because the dividend does not contain an x³ term, ...
Question: 4.4.2

Verified Answer:

\begin{aligned}\text { Possible rational ro...
Question: 4.4.1

Verified Answer:

First, we list all possible rational zeros of F(x)...
Question: 4.3.4

Verified Answer:

Because x-a=x+2=x-(-2), we have a=-2. Write the co...