Question 6.6.8: Finding the Exact Value of a Composite Trigonometric Express...

Finding the Exact Value of a Composite Trigonometric Expression

Find the exact value of

a. \cos \left(\tan ^{-1} \frac{2}{3}\right) .            b. \sin \left[\cos ^{-1}\left(-\frac{1}{4}\right)\right] .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. Let θ represent the radian measure of the angle in the interval \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), with \tan \theta=\frac{2}{3}. Then because tan θ is positive, θ must be positive. We have

\theta=\tan ^{-1} \frac{2}{3} \quad \text { and } \quad 0<\theta<\frac{\pi}{2} .

Figure 85 shows θ in standard position. If (x, y) is a point on the terminal side of θ , then \tan \theta=\frac{y}{x} .

Consequently, we can choose the point with coordinates (3,2) to determine the terminal side of θ.Then x=3, y=2 and we have

\begin{gathered}\tan \theta=\frac{2}{3} \quad \text { and } \cos \theta=\frac{3}{r}, \text { where } \\r=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+2^{2}}=\sqrt{9+4}=\sqrt{13} \text {. So } \\\cos \left(\tan ^{-1} \frac{2}{3}\right)=\cos \theta=\frac{3}{r}=\frac{3}{\sqrt{13}}=\frac{3 \sqrt{13}}{13} .\end{gathered}

b. Let θ represent the radian measure of the angle in [0, \pi], \text { with } \cos \theta=-\frac{1}{4} .
Because cos θ is negative, θ is in quadrant II; so

\theta=\cos ^{-1}\left(-\frac{1}{4}\right) \quad \text { and } \quad \frac{\pi}{2}<\theta<\pi .

Figure 86 shows θ in standard position. If (x, y) is a point on the terminal side of θ and r is the distance between (x, y) and the origin, then \sin \theta=\frac{y}{r} . We choose the point with coordinates (-1, y), a distance of four units from the origin, on the terminal side of θ. Then

\cos \theta=-\frac{1}{4} \quad \text { and } \quad \sin \theta=\frac{y}{4} \text {,where }

\begin{aligned}&r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+y^{2}} \text { or } r^{2}=1+y^{2}\\&4^{2}=1+y^{2} \quad \text { Replace } r \text { with } 4 \text {. }\\&15=y^{2} \quad \text { Simplify. }\\&\sqrt{15}=y \quad y \text { is positive. }\end{aligned}

Thus,

\sin \left[\cos ^{-1}\left(-\frac{1}{4}\right)\right]=\sin \theta=\frac{y}{r}=\frac{\sqrt{15}}{4}.

Screenshot 2022-03-24 121740-min
Screenshot 2022-03-24 121740-min

Related Answered Questions

Question: 6.4.8

Verified Answer:

Use the steps in Example 7 for the procedure for g...
Question: 6.4.6

Verified Answer:

Recall that for any function f, the graph of y = f...
Question: 6.4.3

Verified Answer:

Begin with the graph of y=2 cos x. Multiply the y-...