Question 6.6.7: Finding the Exact Value of sin^-1 (sin x) and cos^-1 (cos x)...
Finding the Exact Value of \sin ^{-1}(\sin x) \text { and } \cos ^{-1}(\cos x)
Find the exact value of
a. \sin ^{-1}\left[\sin \left(-\frac{\pi}{8}\right)\right] b. \cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)
Learn more on how we answer questions.
a. Because -\frac{\pi}{2} \leq-\frac{\pi}{8} \leq \frac{\pi}{2}, \text { we have } \sin ^{-1}\left[\sin \left(-\frac{\pi}{8}\right)\right]=-\frac{\pi}{8}.
b. We cannot use the formula \cos ^{-1}(\cos x)=x \text { for } x=\frac{5 \pi}{4} \text { because } \frac{5 \pi}{4} is not in the interval [0, \pi] . \text { However, } \cos \frac{5 \pi}{4}=\cos \left(2 \pi-\frac{5 \pi}{4}\right)=\cos \frac{3 \pi}{4} \text { and } \frac{3 \pi}{4} is in the interval [0, \pi] . Therefore,
\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)=\cos ^{-1}\left(\cos \frac{3 \pi}{4}\right)=\frac{3 \pi}{4} .