Question 8.4.2: Finding the Multiplicative Inverse of a Matrix Find the mult...

Finding the Multiplicative Inverse of a Matrix

Find the multiplicative inverse of

A =\begin{bmatrix}2 &1 \\ 5 & 3 \end{bmatrix}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us denote the multiplicative inverse by

A^{-1} =\begin{bmatrix}w &x \\ y & z \end{bmatrix}.

Because A is a 2 × 2 matrix, we use the equation AA^{-1} = I_2 to find values for w, x, y, and z.

\begin{bmatrix}2w + y &2x + z \\ 5w + 3y & 5x + 3z\end{bmatrix} = \begin{bmatrix}1 &0 \\ 0 & 1 \end{bmatrix}                  Use row-by-column matrix                                                                                         multiplication on the left side of                                                                                     \begin{bmatrix}2&1 \\ 5 & 3\end{bmatrix}\begin{bmatrix}w &x \\ y & z \end{bmatrix}=\begin{bmatrix}1 &0 \\ 0 & 1 \end{bmatrix}.

We now equate corresponding elements to obtain the following two systems of linear equations:

\begin{cases}2w + y = 1\\ 5w + 3y = 0\end{cases}            and          \begin{cases}2x + z = 0\\ 5x + 3z = 1.\end{cases}

Each of these systems can be solved using the addition method.

w = 3

Use back-substitution.                y = -5

x = -1

Use back-substitution.             z = 2

Using these values, we have

A^{-1}=\begin{bmatrix} w &x \\ y & z \end{bmatrix}=\begin{bmatrix}3 &-1 \\ -5 & 2 \end{bmatrix}.

Related Answered Questions

Question: 8.4.4

Verified Answer:

Step 1 Form the augmented matrix \left[A \m...
Question: 8.4.7

Verified Answer:

Step 1 Find the inverse of the coding matrix. The ...
Question: 8.4.6

Verified Answer:

Step 1 Express the word numerically. As shown prev...
Question: 8.4.3

Verified Answer:

                 This is the given matrix. We’ve d...
Question: 8.4.1

Verified Answer:

To show that B is the multiplicative inverse of A,...