Question 19.10: For a standard series “A” Belleville spring, the spring rate...

For a standard series “A” Belleville spring, the spring rate or stiffness can be determined by the equation

k=\frac{4 E}{\left(1-\mu^{2}\right)} \times \frac{t^{3}}{K_{1} D_{e}^{2}}

where E is Young’s modulus of the washer material, t is the washer thickness, µ is Poisson’s ration, K_1 is a dimensionless constant, and D_e is the external diameter.

Determine the sure-fit and probable limits for the spring stiffness stating any assumptions made if

t=2.22 \pm 0.03 mm , D_{e}=40.00 \pm 0.08 mm , \mu=0.30 \pm 0.003,

 

E=207 \times 10^{9} \pm 2 \times 10^{9} N / m ^{2}, K_{1}=0.69

Comment on which tolerance could be altered to best reduce the overall variability.

 

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
k=\frac{4 E}{\left(1-\mu^{2}\right)} \times \frac{t^{3}}{K_{1} D_{e}^{2}}.

 

K_{1}=\text { constant }.

Assuming quantities are subject to variability and are uncorrelated and random,

\Delta k_{\text {sure-fit }}=\left|\frac{\partial k}{\partial E}\right| \Delta E+\left|\frac{\partial k}{\partial \mu}\right| \Delta \mu+\left|\frac{\partial k}{\partial t}\right| \Delta t+\left|\frac{\partial k}{\partial D_{e}}\right| \Delta D_{e}.

 

\Delta k_{\text {basic normal }}^{2}=\left|\frac{\partial k}{\partial E}\right|^{2} \Delta E^{2}+\left|\frac{\partial k}{\partial \mu}\right|^{2} \Delta \mu^{2}+\left|\frac{\partial k}{\partial t}\right|^{2} \Delta t^{2}+\left|\frac{\partial k}{\partial D_{e}}\right|^{2} \Delta D_{e}^{2} \text {. }

 

\frac{\partial k}{\partial E}=\frac{4 t^{3}}{\left(1-\mu^{2}\right) K_{1} D_{e}^{2}}=\frac{4 \times\left(2.22 \times 10^{-3}\right)^{3}}{\left(1-0.3^{2}\right) \times 0.69 \times 0.04^{2}}=4.356 \times 10^{-5}.

 

\frac{\partial k}{\partial \mu}=-\frac{2 \mu}{\left(1-\mu^{2}\right)^{2}} \times \frac{4 E t^{3}}{K_{1} D_{e}^{2}}=-\frac{2 \times 0.3}{(1-0.09)^{2}} \times \frac{4 \times 207 \times 10^{9} \times\left(2.22 \times 10^{-3}\right)^{3}}{0.69 \times 0.04^{2}}

 

=-5.946 \times 10^{6}.

Quotient rule, \left(\frac{u}{v}\right)^{\prime}=\frac{u v^{\prime}-v u^{\prime}}{v^{2}}

 

\frac{\partial k}{\partial t}=\frac{12 E t^{2}}{\left(1-\mu^{2}\right) K_{1} D_{e}^{2}}=\frac{12 \times 207 \times 10^{9} \times\left(2.22 \times 10^{-3}\right)^{2}}{(1-0.09) \times 0.69 \times 0.04^{2}}=1.219 \times 10^{10}

 

\frac{\partial k}{\partial D_{e}}=-\frac{8 E t^{3}}{\left(1-\mu^{2}\right) K_{1} D_{e}^{3}}=-\frac{8 \times 207 \times 10^{9} \times(0.00222)^{3}}{(1-0.09) \times 0.69 \times(0.04)^{3}}=-4.509 \times 10^{8}.

Assume natural tolerance limits ± 3σ,

\Delta E=2 \times 2 \times 10^{9}=4 \times 10^{9}.

 

\Delta \mu=2 \times 0.003=0.006.

 

\Delta t=2 \times 0.03 \times 10^{-3}=6 \times 10^{-5} .

 

\Delta D_{e}=2 \times 0.08 \times 10^{-3}=1.6 \times 10^{-4}.

 

\Delta k_{\text {sure-fit }}=(4.356 \times 10-5-5 \times 4 \times 109)+(5.946 \times 106 \times 0.006) +\left(1.219 \times 10^{10} \times 6 \times 10^{-5}\right)+\left(4.509 \times 10^{8} \times 1.6 \times 10^{-4}\right)
=174,240+35,676+731,400+72,144=1,013,460

\bar{k}=\frac{4 \times 207 \times 10^{9}}{1-0.3^{2}} \times \frac{\left(2.22 \times 10^{-3}\right)^{3}}{0.69 \times 0.04^{2}}=9,017,347.3 N / m.

 

k_{\text {sure-fit }}=9,017,000 \pm 506,700 N / m.

 

\Delta k_{\text {basic normal }}^{2}=174,240^{2}+35,676^{2}+731,400^{2}+72,144^{2}=5.718 \times 10^{11}

 

\Delta k_{\text {basic normal }}=756,200.

 

k_{\text {basic normal }}=9,017,000 \pm 378,100 N / m.

To reduce the variability, tighten the tolerances on t as this has the highest sensitivity coefficient.

 

 

Related Answered Questions

Question: 19.1

Verified Answer:

From Table 19.1, the ISO symbol is 35H11/c11 (the ...
Question: 19.2

Verified Answer:

From Table 19.1, the ISO symbol is 60H7/s6. Table ...