Question 23.4: For the Δ-Y system shown in Fig. 23.21: a. Find the voltage ...

For the Δ-Y system shown in Fig. 23.21:
a. Find the voltage across each phase of the load.
b. Find the magnitude of the line voltages.

23.21
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { a. } I _{\phi L}= I _{L} \text {. Therefore },

\begin{aligned}& I _{a n}= I _{A a}=2 A \angle 0^{\circ} \\& I _{b n}= I _{B b}=2 A \angle-120^{\circ} \\& I _{c n}= I _{C c}=2 A \angle 120^{\circ}\end{aligned}

The phase voltages are

V _{a n}= I _{a n} Z _{a n}=\left(2 A \angle 0^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)= 2 0 V \angle- 5 3 . 1 3 ^{\circ}.

V _{b n}= I _{b n} Z _{b n}=\left(2 A \angle-120^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)= 2 0 V \angle- 1 7 3 . 1 3 ^{\circ}.

V _{c n}= I _{c n} Z _{c n}=\left(2 A \angle 120^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)=20 V \angle 6 6 . 8 7 ^{\circ}.

\text { b. } E_{L}=\sqrt{3} V_{\phi}=(1.73)(20 V )=34.6 V . \text { Therefore, }

E_{B A}=E_{C B}=E_{A C}=34.6 V.

Related Answered Questions