Question 11.S-P.6: For the beam and loading shown, determine the deflection at ...

For the beam and loading shown, determine the deflection at point D. Use E = 29 × 10^6 psi.

11.6
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Castigliano’s Theorem.     Since the given loading does not include a vertical load at point D, we introduce the dummy load Q as shown. Using Castigliano’s theorem and noting that EI is constant, we write

y_{D}=\int \frac{M}{E I}\left(\frac{\partial M}{\partial Q}\right) d x=\frac{1}{E I} \int M\left(\frac{\partial M}{\partial Q}\right) d x                                         (1)

The integration will be performed separately for portions AD and DB.

Reactions.     Using the free-body diagram of the entire beam, we find

R _{A}=\frac{w b^{2}}{2 L}+Q \frac{b}{L} \uparrow                  R _{B}=\frac{w b\left(a+\frac{1}{2} b\right)}{L}+Q \frac{a}{L} \uparrow

Portion AD of Beam.     Using the free body shown, we find

M_{1}=R_{A} x=\left(\frac{w b^{2}}{2 L}+Q \frac{b}{L}\right) x                            \frac{\partial M_{1}}{\partial Q}=+\frac{b x}{L}

Substituting into Eq. (1) and integrating from A to D gives

\frac{1}{E I} \int M_{1} \frac{\partial M_{1}}{\partial Q} d x=\frac{1}{E I} \int_{0}^{a} R_{A} x\left(\frac{b x}{L}\right) d x=\frac{R_{A} a^{3} b}{3 E I L}

We substitute for R_A and then set the dummy load Q equal to zero.

\frac{1}{E I} \int M_{1} \frac{\partial M_{1}}{\partial Q} d x=\frac{w a^{3} b^{3}}{6 E I L^{2}}                              (2)

Portion DB of Beam.     Using the free body shown, we find that the bending moment at a distance v from end B is

M_{2}=R_{B} v-\frac{w v^{2}}{2}=\left[\frac{w b\left(a+\frac{1}{2} b\right)}{L}+Q \frac{a}{L}\right] v-\frac{w v^{2}}{2}                              \frac{\partial M_{2}}{\partial Q}=+\frac{a v}{L}

Substituting into Eq. (1) and integrating from point B where v = 0, to point D where v = b, we write

\frac{1}{E I} \int M_{2} \frac{\partial M_{2}}{\partial Q} d v=\frac{1}{E I} \int_{0}^{b}\left(R_{B} v-\frac{w v^{2}}{2}\right)\left(\frac{a v}{L}\right) d v=\frac{R_{B} a b^{3}}{3 E I L}-\frac{w a b^{4}}{8 E I L}

Substituting for R_B and setting Q = 0,

\frac{1}{E I} \int M_{2} \frac{\partial M_{2}}{\partial Q} d v=\left[\frac{w b\left(a+\frac{1}{2} b\right)}{L}\right] \frac{a b^{3}}{3 E I L}-\frac{w a b^{4}}{8 E I L}=\frac{5 a^{2} b^{4}+a b^{5}}{24 E I L^{2}} w                                     (3)

Deflection at Point D.     Recalling Eqs. (1), (2), and (3), we have

y_{D}=\frac{w a b^{3}}{24 E I L^{2}}\left(4 a^{2}+5 a b+b^{2}\right)=\frac{w a b^{3}}{24 E I L^{2}}(4 a+b)(a+b)=\frac{w a b^{3}}{24 E I L}(4 a+b)

From Appendix C we find that I=68.9 in ^{4} for a W10 × 15. Substituting for I, w, a, b, and L their numerical values, we obtain

y_{D}=0.262 in . \downarrow
11.61
11.62

Related Answered Questions

Question: 11.S-P.7

Verified Answer:

Castigliano’s Theorem.     The beam is indetermina...
Question: 11.S-P.5

Verified Answer:

Castigliano’s Theorem.     Since no vertical load ...
Question: 11.15

Verified Answer:

The beam is statically indeterminate to the first ...
Question: 11.13

Verified Answer:

Deflection at A. We apply a dummy downward load [l...