Question 15.SP.4: For the beam and loading shown, determine the slope and defl...
For the beam and loading shown, determine the slope and deflection at point B.
STRATEGY: Using the method of superposition, you can model the given problem using a summation of beam load cases for which deflection formulae are readily available.

Learn more on how we answer questions.
MODELING: Through the principle of superposition, the given loading can be obtained by superposing the loadings shown in the picture equation of Fig. 1. The beam AB is the same in each part of the figure.
ANALYSIS: For each of the loadings I and II (detailed further in Fig. 2), determine the slope and deflection at B by using the table of Beam Deflections and Slopes in Appendix E.
Loading I.
\left(\theta_B\right)_I=-\frac{w L^3}{6 E I} \quad\left(y_B\right)_I=-\frac{w L^4}{8 E I}Loading II.
\left(\theta_C\right)_{I I}=+\frac{w(L / 2)^3}{6 E I}=+\frac{w L^3}{48 E I} \quad\left(y_C\right)_{I I}=+\frac{w(L / 2)^4}{8 E I}=+\frac{w L^4}{128 E I}In portion CB, the bending moment for loading II is zero. Thus, the elastic curve is a straight line.
\begin{aligned}\left(\theta_B\right)_{I I}=\left(\theta_C\right)_{I I}=+\frac{w L^3}{48 E I} \quad \quad\left(y_B\right)_{I I}&=\left(y_C\right)_{I I}+\left(\theta_C\right)_{I I}\left(\frac{L}{2}\right) \\&=\frac{w L^4}{128 E I}+\frac{w L^3}{48 E I}\left(\frac{L}{2}\right)=+\frac{7 w L^4}{384 E I} \end{aligned}Slope at Point B.
\theta_B=\left(\theta_B\right)_I+\left(\theta_B\right)_{I I}=-\frac{w L^3}{6 E I}+\frac{w L^3}{48 E I}=-\frac{7 w L^3}{48 E I} \quad \theta_B=\frac{7 w L^3}{48 E I} ⦪Deflection at B.
y_B=\left(y_B\right)_I+\left(y_B\right)_{I I}=-\frac{w L^4}{8 E I}+\frac{7 w L^4}{384 E I}=-\frac{41 w L^4}{384 E I} \quad \quad y_B=\frac{41 w L^4}{384 E I} \downarrowREFLECT and THINK: Note that the formulae for one beam case can sometimes be extended to obtain the desired deflection of another case, as you saw here for loading II.

