Question 7.17: For the beam shown in Figure 7.31, find the support reaction...
For the beam shown in Figure 7.31, find the support reactions. Assume EI to be constant.

Learn more on how we answer questions.
We note from the given beam loading that it is a statically indeterminate system. Let us now draw the free-body diagram of the beam as shown in Figure 7.32(a).
We note from Figure 7.32(a) that
\sum F_y=0 \Rightarrow R_{ A }+R_{ B }=\frac{w_{ o } L}{2} (1)
\sum M_{ A }=0 \Rightarrow R_{ B } L-M_{ A }=\frac{3 w_{ o } L^2}{8} (2)
Now, from Figure 7.32(b) bending moment expression at any section at a distance x from end A is given by
M_x=R_{ A } x+M_{ A }-\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2
Now from the flexure equation, we get
(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-R_{ A } x-M_{ A }+\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2
Integrating once, we get
(E I) \frac{ d y}{ d x}=-\frac{R_{ A } x^2}{2}-M_{ A } x+\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3+C_1
Now, at x = 0, dy/dx = 0, so C_1=0 . Substituting in the above expression, we get
(E I) \frac{ d y}{ d x}=-\frac{R_{ A } x^2}{2}-M_{ A } x+\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3
Again integrating, we get
(E I) y=-\frac{R_{ A } x^3}{6}-\frac{M_{ A } x^2}{2}+\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4+C_2
Again we note that at x = 0, y = 0, so C_2=0 . Thus, we have
(E I) y=-\frac{R_{ A } x^3}{6}-\frac{M_{ A } x^2}{2}+\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4
We observe that at x = L, y = 0. Therefore, from the above expression we note that
-\frac{R_{ A } L^3}{6}-\frac{M_{ A } L^2}{2}+\frac{w_{ o } L^4}{384}=0
or R_{ A } L+3 M_{ A }=\frac{w_{ o } L^2}{64} (3)
Now solving Eqs. (1)–(3) simultaneously,
\left\lgroup \frac{w_{ o } L}{2}-R_{ A } \right\rgroup L-M_{ A }=\frac{3 w_{ o } L^2}{8}
or -R_{ A } L-M_{ A }=\frac{3 w_{ o } L^2}{8}-\frac{w_{ o } L^2}{2}=-\frac{w_{ o } L^2}{8} (4)
Adding Eqs. (3) and (4),
2 M_{ A }=\frac{w_{ o } L^2}{64}-\frac{w_{ o } L^2}{8}=-\frac{7 w_{ o } L^2}{64}
Therefore,
M_{ A }=-\frac{7 w_{ o } L^2}{128}
Thus from Eq. (2),
R_{ B }=\frac{1}{L}\left\{\frac{3 w_{ o } L^2}{8}-\frac{7 w_{ o } L^2}{128}\right\}=\frac{41 w_{ o } L}{128} \Rightarrow R_{ A }=\frac{23 w_{ o } L}{128}
Thus, we have the support reactions as
R_{ A }=\frac{23 w_{ o } L}{128}(\uparrow), \quad M_{ A }=\frac{7 w_{ o } L^2}{128}(\uparrow) \quad \text { and } \quad R_{ B }=\frac{41 w_{ o } L}{128}(\uparrow)
