Question 7.17: For the beam shown in Figure 7.31, find the support reaction...

For the beam shown in Figure 7.31, find the support reactions. Assume EI to be constant.

7.31
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We note from the given beam loading that it is a statically indeterminate system. Let us now draw the free-body diagram of the beam as shown in Figure 7.32(a).

We note from Figure 7.32(a) that

\sum F_y=0 \Rightarrow R_{ A }+R_{ B }=\frac{w_{ o } L}{2}             (1)

\sum M_{ A }=0 \Rightarrow R_{ B } L-M_{ A }=\frac{3 w_{ o } L^2}{8}        (2)

Now, from Figure 7.32(b) bending moment expression at any section at a distance x from end A is given by

M_x=R_{ A } x+M_{ A }-\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2

Now from the flexure equation, we get

(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-R_{ A } x-M_{ A }+\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2

Integrating once, we get

(E I) \frac{ d y}{ d x}=-\frac{R_{ A } x^2}{2}-M_{ A } x+\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3+C_1

Now, at x = 0, dy/dx = 0, so C_1=0 . Substituting in the above expression, we get

(E I) \frac{ d y}{ d x}=-\frac{R_{ A } x^2}{2}-M_{ A } x+\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3

Again integrating, we get

(E I) y=-\frac{R_{ A } x^3}{6}-\frac{M_{ A } x^2}{2}+\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4+C_2

Again we note that at x = 0, y = 0, so C_2=0 . Thus, we have

(E I) y=-\frac{R_{ A } x^3}{6}-\frac{M_{ A } x^2}{2}+\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4

We observe that at x = L, y = 0. Therefore, from the above expression we note that

-\frac{R_{ A } L^3}{6}-\frac{M_{ A } L^2}{2}+\frac{w_{ o } L^4}{384}=0

or          R_{ A } L+3 M_{ A }=\frac{w_{ o } L^2}{64}           (3)

Now solving Eqs. (1)–(3) simultaneously,

\left\lgroup \frac{w_{ o } L}{2}-R_{ A } \right\rgroup L-M_{ A }=\frac{3 w_{ o } L^2}{8}

or          -R_{ A } L-M_{ A }=\frac{3 w_{ o } L^2}{8}-\frac{w_{ o } L^2}{2}=-\frac{w_{ o } L^2}{8}            (4)

Adding Eqs. (3) and (4),

2 M_{ A }=\frac{w_{ o } L^2}{64}-\frac{w_{ o } L^2}{8}=-\frac{7 w_{ o } L^2}{64}

Therefore,

M_{ A }=-\frac{7 w_{ o } L^2}{128}

Thus from Eq. (2),

R_{ B }=\frac{1}{L}\left\{\frac{3 w_{ o } L^2}{8}-\frac{7 w_{ o } L^2}{128}\right\}=\frac{41 w_{ o } L}{128} \Rightarrow R_{ A }=\frac{23 w_{ o } L}{128}

Thus, we have the support reactions as

R_{ A }=\frac{23 w_{ o } L}{128}(\uparrow), \quad M_{ A }=\frac{7 w_{ o } L^2}{128}(\uparrow) \quad \text { and } \quad R_{ B }=\frac{41 w_{ o } L}{128}(\uparrow)

7.32

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...