Question G.1: For the binary system diethylamine(1)/n-heptane(2) at 308.15...

For the binary system diethylamine(1)/n-heptane(2) at 308.15 K, find γ_1 and γ_2 when x_1 = 0.4 and x_2 = 0.6.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The subgroups involved are indicated by the chemical formulas:

\mathrm{CH}_3-\mathrm{CH}_2 \mathrm{NH}-\mathrm{CH}_2-\mathrm{CH}_3(1) / \mathrm{CH}_3-\left(\mathrm{CH}_2\right)_5-\mathrm{CH}_3 \text { (2) }

The following table shows the subgroups, their identification numbers k, values of parameters R_k  and  Q_k (from Table G.1), and the numbers of each subgroup in each molecule:

k R_k Q_k v_k^{(1)} v_k^{(2)}
CH_3 1 0.9011 0.848 2 2
CH_2 2 0.6744 0.54 1 5
CH_2NH 33 1.207 0.936 1 0

By Eq. (G.15),

r_i=\sum_k v_k^{(i)} R_k             (G.15)

r_1=(2)(0.9011)+(1)(0.6744)+(1)(1.2070)=3.6836

Similarly,

r_2=(2)(0.9011)+(5)(0.6744)=5.1742

In like manner, by Eq. (G.16),

q_i=\sum_k v_k^{(i)} Q_k     (G.16)

q_1=3.1720 \quad \text { and } \quad q_2=4.3960

The r_i  and  q-i values are molecular properties, independent of composition. Substituting known values into Eq. (G.17) generates the following table for e_{ki} :

e_{k i}=\frac{v_k^{(i)} Q_k}{q_i}       (G.17)

e_{ki}
k i = 1 i = 2
1 0.5347 0.3858
2 0.1702 0.6142
33 0.2951 0.000

The following interaction parameters are found from Table G.2:

a_{1,1}=a_{1,2}=a_{2,1}=a_{2,2}=a_{33,33}=0 \mathrm{~K}

a_{1,33}=a_{2,33}=255.7 \mathrm{~K}

a_{33.1}=a_{33.2}=65.33 \mathrm{~K}

Substitution of these values into Eq. (G.21) with T = 308.15 K gives

\tau_{m k}=\exp \frac{-a_{m k}}{T}     (G.21)

\tau_{1,1}=\tau_{1,2}=\tau_{2,1}=\tau_{2,2}=\tau_{33,33}=1

\tau_{1,33}=\tau_{2,33}=0.4361

\tau_{33,1}=\tau_{33,2}=0.8090

Application of Eq. (G.18) leads to the values of β_{ik} in the following table:

\beta_{i k}=\sum_m e_{m i} \tau_{m k}   (G.18)

192pt;” border=”0″ width=”256″ cellspacing=”0″ cellpadding=”0″>

β_{ik}ik = 1k = 2k = 3310.94360.94360.60242110.436

Substitution of these results into Eq. (G.19) yields:

\theta_k=\frac{\sum_i x_i q_i e_{k i}}{\sum_j x_j q_j}   (G.19)

\theta_1=0.4342 \quad \theta_2=0.4700 \quad \theta_{33}=0.0958

and by Eq. (G.20),

s_k=\sum_m \theta_m \tau_{m k}       (G.20)

s_1=0.9817 \quad s_2=0.9817 \quad s_{33}=0.4901

The activity coefficients can now be calculated. By Eq. (G.13),

\ln \gamma_i^C=1-J_i+\ln J_i-5 q_i\left(1-\frac{J_i}{L_i}+\ln \frac{J_i}{L_i}\right)       (G.13)

\ln \gamma_1^C=-0.0213 \quad \text { and } \quad \ln \gamma_2^C=-0.0076

and by Eq. (G.14),

\ln \gamma_i^R=q_i\left[1-\sum_k\left(\theta_k \frac{\beta_{i k}}{s_k}-e_{k i} \ln \frac{\beta_{i k}}{s_k}\right)\right]     (G.14)

\ln \gamma_1^R=0.1463 \quad \text { and } \quad \ln \gamma_2^R=0.0537

Finally, Eq. (G.7) gives:

\gamma_1=1.133 \quad \text { and } \quad \gamma_2=1.047