Question 5.23: For the common-base amplifier of Fig. 5.121 , determine the ...

For the common-base amplifier of Fig. 5.121 , determine the following parameters using the complete hybrid equivalent model and compare the results to those obtained using the approximate model.

a. Z_i
b. A_i
c.A_{v} .
d. Z_o

5.121
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The common-base hybrid parameters are derived from the common-emitter parameters using the approximate equations of Appendix B :

h_{i b} \cong \frac{h_{i e}}{1+h_{f e}}=\frac{1.6 k \Omega}{1+110}= 1 4 . 4 1 \Omega

Note how closely the magnitude compares with the value determined from

h_{i b}=r_{e}=\frac{h_{i e}}{\beta}=\frac{1.6 k \Omega}{110}=14.55 \Omega

Also, h_{r b} \cong \frac{h_{i e} h_{o e}}{1+h_{f e}}-h_{r e}=\frac{(1.6 k \Omega)(20 \mu S )}{1+110}-2 \times 10^{-4}

 

=0.883 \times 10^{-4}

 

h_{f b} \cong \frac{-h_{f e}}{1+h_{f e}}=\frac{-110}{1+110}=- 0 . 9 9 1

 

h_{o b} \cong \frac{h_{o e}}{1+h_{f e}}=\frac{20 \mu S }{1+110}= 0 . 1 8 \mu S

Substituting the common-base hybrid equivalent circuit into the network of Fig. 5.121 results in the small-signal equivalent network of Fig. 5.122 . The Thévenin network for the input circuit results in R_{T h}=3 k \Omega \| 1 k \Omega=0.75 k \Omega for R_s in the equation for Z_o .

a. Eq. (5.169):

Z_{i}=\frac{V_{i}}{I_{i}}=h_{i}-\frac{h_{f} h_{r} R_{L}}{1+h_{o} R_{L}}                                        (5.169)

 

Z_{i}^{\prime}=\frac{V_{i}}{I_{i}^{\prime}}=h_{i b}-\frac{h_{f b} h_{r b} R_{L}}{1+h_{o b} R_{L}}

 

=14.41 \Omega-\frac{(-1.991)\left(0.883 \times 10^{-4}\right)(2.2 k \Omega)}{1+(0.18 \mu S )(2.2 k \Omega)}

= 14.41 Ω + 0.19 Ω

= 14.60 Ω

versus 14.41Ω  using Z_{i} \cong h_{i b}; and

Z_{i}=3 k \Omega \| Z_{i}^{\prime} \cong Z_{i}^{\prime}= 1 4 . 6 0 \Omega

b. Eq. (5.167):

A_{i}^{\prime}=\frac{I_{o}}{I_{i}^{\prime}}=\frac{h_{f b}}{1+h_{o b} R_{L}}

 

=\frac{-0.991}{1+(0.18 \mu S )(2.2 k \Omega)}

= -0.991

Because 3 k \Omega \gg Z_{i}^{\prime}, I_{i} \cong I_{i}^{\prime} and A_{i}=I_{o} / I_{i} \cong- 1.

c. Eq. (5.168):

A_{v}=\frac{V_{o}}{V_{i}}=\frac{-h_{f} R_{L}}{h_{i}+\left(h_{i} h_{o}-h_{f} h_{r}\right) R_{L}}

 

=\frac{-(-0.991)(2.2 k \Omega)}{14.41 \Omega+\left[(14.41 \Omega)(0.18 \mu S )-(-0.991)\left(0.883 \times 10^{-4}\right)\right] 2.2 k \Omega}

= 149.25

versus 151.3 using A_{v} \cong-h_{f b} R_{L} / h_{i b}.

d. Eq. (5.170):

Z_{o}=\frac{V_{o}}{I_{o}}=\frac{1}{h_{o}-\left[h_{f} h_{r} /\left(h_{i}+R_{s}\right)\right]}                              (5.170)

 

Z_{o}^{\prime}=\frac{1}{h_{o b}-\left[h_{f b} h_{r b} /\left(h_{i b}+R_{s}\right)\right]}

 

=\frac{1}{0.18 \mu S -\left[(-0.991)\left(0.883 \times 10^{-4}\right) /(14.41 \Omega+0.75 k \Omega)\right]}

 

=\frac{1}{0.295 \mu S }

= 3.39 M Ω

versus 5.56 M Ω using Z_{o}^{\prime} \cong 1 / h_{o b}. For Z_o as defined by Fig. 5.122 ,

Z_{o}=R_{C}\left\|Z_{o}^{\prime}=2.2 k \Omega\right\| 3.39 M \Omega= 2 . 1 9 9 k \Omega

versus 2.2 kΩ  using Z_{o} \cong R_{C}

5.122

Related Answered Questions

Question: 5.21

Verified Answer:

a. Z_{i}=R_{E}\left\|h_{i b}=2.2 k \Omega\r...
Question: 5.20

Verified Answer:

a.  Z_{i}=R_{B}\left\|h_{i e}=330 k \Omega\...
Question: 5.17

Verified Answer:

\beta_{D}=\beta_{1} \beta_{2}=(50)(100)= 5 ...