Question 3.8: For the core shown in Fig. 3.20, it is required to produce a...

For the core shown in Fig. 3.20, it is required to produce a flux of 2 mWb in the limb CD. The entire core has a rectangular cross section of 2cm × 2cm. The magnetizing coil has 800 turns. The relative permeability of the material is 1200. Calculate the amount of magnetizing current required.

3.20
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Length CD = BE = AF = 10 cm
Length BC = ED = AB = EF = 8 cm
Length BCDE = 8 + 10 + 8 = 26 cm
Length BAFE = 8 + 10 + 8 = 26 cm
Length BE = 10cm; μ_{r} = 1200
Total flux, Φ= Φ_{1}+ Φ_{2}
N = 800, Φ_{2} = 2 × 10^{−3}  Wb, current, I = ?

Let us draw the equivalent electrical circuit of the given magnetic circuit. The equivalent electric circuit will be as shown in Fig. 3.21.
The voltage drop across CD is I_{2}  R_{2}.

The voltage drop across BE is equal to the voltage drop cross CD.
Therefore,

I_{1}  R_{1} = I_{2}  R_{2}

or,                              I_{1}= I_{2}  \frac{R_{2}}{R_{1}}

For the magnetic circuit, from the analogy of the above equivalent electric circuit, we can write

Φ_{1} = Φ_{2}  \frac{S_{2}}{S_{1}}

S_{2} is the reluctance of path BCDE
S_{1} is the reluctance of path BE

S_{2}= \frac{1}{μ_{0}  μ_{r}  A}= \frac{26  ×  10^{-2}}{4π  ×  10^{-7}  ×  1200  ×  4  ×  10^{-4}}

S_{1}= \frac{10  ×  10^{-2}  }{μ_{0}  μ_{r}  A}= \frac{10  ×  10^{-2}}{4π  ×  10^{-7}  ×  1200 ×  4  ×  10^{-4}}

Φ_{1} = Φ_{2}  \frac{S_{2}}{S_{1}}  = 2  ×  10^{-3} \frac{26}{10}  =  5.2  ×  10^{-3}  Wb.

Φ =Φ_{1} + Φ_{2}= 2  ×  10^{-3}  +  5.2  ×  10^{-3} = 7.2  ×  10^{−3}  Wb.

AT required for portion BAFE (=26cm) = Φ × S_{3}

=\frac{7.2  ×  10^{−3} ×  26  ×  10^{-2}}{4π  ×  10^{-7}  ×   1200  ×  4  ×  10^{-4}}=3105

AT required for portion BE = Φ_{1}  ×  S_{1}

 

=\frac{5.2  ×  10^{−3}  ×  10  ×  10^{-2}}{4π ×  10^{-7}  ×  1200  ×  4  ×  10^{-4}}

= 862

In the electric circuit, we see that by applying KCL

E − IR  –  I_{1}  R_{1} = 0

or,                                        E = IR  + I_{1}  R_{1}

Similarly, for the magnetic circuit
Total AT = AT required for portion BAFF + AT required for the portion BE

= 3105 + 862
= 3967.

The number of turns of the exciting coil is 800.

AT = NI = 3967

I=\frac{3967}{N}=\frac{3967}{800}=4.95  A.

3.21

Related Answered Questions