Question 10.35: For the diffusion of carbon dioxide at atmospheric pressure ...

For the diffusion of carbon dioxide at atmospheric pressure and a temperature of 293 K, at what time will the concentration of solute 1 mm below the surface reach 1 per cent of the value at the surface? At that time, what will the mass transfer rate (kmol m^{-2} s^{-1}) be:

(a) At the free surface?
(b) At the depth of 1 mm?

The diffusivity of carbon dioxide in water may be taken as 1.5 × 10^{-9}  m²s^{-1}. In the literature, Henry’s law constant K for carbon dioxide at 293 K is given as 1.08 × 10⁶ where K = P/X, P being the partial pressure of carbon dioxide (mm Hg) and X the corresponding mol fraction in the water.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\frac{∂C_{A}}{∂t} =D\frac{∂^{2}C_{A}}{∂y^{2}}

where C_{A}is concentration of solvent undergoing mass transfer.
The boundary conditions are:

\begin{matrix} y=0 \ \text{(interface)} & C_A=C_{As} \ \text{(solution value))}& t\gt 0 & \\ y=\infty & C_A=0 \\ t=0 & C_A=0 & 0\lt y\lt \infty \end{matrix}

Taking Laplace transforms then:

\frac{\overline{∂C_{A}} }{∂t} =\int_{0}^{\infty }\left(\frac{∂C_{A}}{∂t} \right) e^{-pt}dt

=[C_{A}e^{-pt}]_{0}^{\infty }-\int_{0}^{\infty }(-pe^{pt})C_{A}dt=0+p\overline{C} _{A}

\frac{\overline{∂^{2}C_{A}} }{∂y^{2}} =\frac{∂^{2}\overline{C}_{A} }{∂y^{2}}

Thus:   p\overline{C} _{A}=D\frac{∂^{2}\overline{C}_{A} }{∂y^{2}}

\frac{∂^{2}\overline{C}_{A} }{∂y^{2}}-\frac{p}{D} \overline{C} _{A}=0

\overline{C}_{A}=Ae^{\sqrt{p/D}y }+Be^{-\sqrt{p/D}y }

For t > 0;

\begin{matrix} \text{when} & y=\infty & C_A=0,& \bar{C_A}=0 \enspace \therefore A=0.\hspace{100 pt} & \\ \text{when} & y=0 & C_A=C_{As}& \bar{C_{As}}=\int_{0}^{\infty }{C_{As}e^{-pt}dt}=C_{As}\left[\frac{e^{-pt}}{-p}\right]=\frac{C_{As}}{p}.\end{matrix}

Thus:  \frac{C_{As}}{p} =B.1

and:  \overline{C} _{A}=\frac{C_{As}}{p} e^{-\sqrt{p/D} y}

Inverting:  \frac{C_{A}}{C_{As}} =\text{erfc}\frac{y}{2\sqrt{Dt} }  (See Table in Volume 1, Appendix)

Differentiating with respect to y:

\frac{1}{C_{As}} \frac{∂C_{A}}{∂y} =\frac{∂}{∂y} \left\{\frac{2}{\sqrt{\pi } }\int_{y/2\sqrt{D}t }^{\infty }e^{-y^{2}/4Dt}d\left(\frac{y}{2\sqrt{Dt} } \right) \right.

=\frac{2}{\sqrt{\pi } } .\frac{1}{2\sqrt{D}t } (e^{-y^{2}/4Dt})=-\frac{1}{\sqrt{\pi Dt} } e^{-y^{2}/4Dt}

The mass transfer rate at t, y, N = -D\left\{\frac{-1}{\sqrt{\pi Dt} } e^{-y^{2}/4Dt}\right\} C_{As}

when: t > 0, then: \left(-D\frac{∂C_{A}}{∂y}\right) _{y=y}=C_{As}\sqrt{\frac{D}{\pi Dt} } e^{-y^{2}/4Dt}    (i)

At t > 0  and  y = 0, then: N_{0}=C_{As}\sqrt{\frac{D}{\pi t} }     (ii)

For a concentrated 1% of surface value at y = 1 mm, C_{A}/C_{As} = 0.01 and:

0.01 = \text{erfc}\left\{\frac{10^{-3}}{2\sqrt{1.5\times 10^{-9}t} } \right\}

Writing     erf x = 1 – erfc x, then:
0.99 = erf(12.91t^{-1/2})

From tables     1.82 = 12.91t^{-1/2}
t = 50.3 s

The mass transfer rate at the interface at t = 50.3 s is given by equation (ii) as:

N_{0}=C_{As}\sqrt{\frac{D}{\pi t} } =C_{As}\sqrt{\frac{1.5\times 10^{-9}}{\pi \times 50.3} }

= 3.08 × 10^{-6} C_{As} kmol/m² s

The mass transfer rate at y = 1 mm. and t = 50.3 s is given by equation (i) as:

N=N_{0}e^{-y^{2}/4Dt}=3.08\times 10^{-6}e^{-10^{-6}/(4\times 1.5\times 10^{-9}\times 50.3)}C_{As}

= 1.121 × 10^{-7} C_{As} where C_{As} is in kmol/m³.

Henry’s law constant, K = 1.08 × 10⁶, where: K = P/X.
Also: P = 760 mm Hg
X = Mol fraction in liquid
X = 760/(1.08 × 10⁶) = 7.037 × 10^{-4} kmol CO₂ kmol solution (≈ per kmol water)
Water molar density = (1000/18) kmol/m³

and:  C_{As}=7.037\times 10^{-4}\left(\frac{1000}{18} \right) =0.0391 kmol/m³

When y = 0, then: N_{A0} = 1.204 × 10^{-7} kmol/m² s.
When y = 1 mm, then: N_{A} = 4.38 × 10^{-9} kmol/m² s.

Related Answered Questions