Question 8.15: For the following thrust bearing (Fig. 8.21), show that the ...

For the following thrust bearing (Fig. 8.21), show that the force on the straight slider in the x-direction is the same as that on the guide.

8.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is given that the velocity profile is

 

uU=(1yh)[13yh(12n+1h1h)]\frac{u}{U}=\left(1-\frac{y}{h}\right)\left[1-3 \frac{y}{h}\left(1-\frac{2}{n+1} \frac{h_{1}}{h}\right)\right]

 

and load

 

P=6μUL2h22(n1)2[lnn2(n1)n+1]P=\frac{6 \mu U L^{2}}{h_{2}^{2}(n-1)^{2}}\left[\ln n-\frac{2(n-1)}{n+1}\right]

 

where n=h1/h2n=h_{1} / h_{2}

 

Force on the slider in the x-direction is

 

Fs=0Lτsdx(1)cosαcosα+0L(pp0)dxcosα(1)sinαF_{s}=\int_{0}^{L} \tau_{s} d x(1) \frac{\cos \alpha}{\cos \alpha}+\int_{0}^{L}\left(p-p_{0}\right) \frac{ d x}{\cos \alpha}(1) \sin \alpha

 

=0Lτsdx+tanα0L(pp0)dx=\int_{0}^{L} \tau_{s} d x+\tan \alpha \int_{0}^{L}\left(p-p_{0}\right) d x

 

Now, τs=μ(uy)y=h\tau_{s}=-\mu\left(\frac{\partial u}{\partial y}\right)_{y=h}

 

and u=U(1yh)[13yh(12n+1h1h)], so we get u=U\left(1-\frac{y}{h}\right)\left[1-3 \frac{y}{h}\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right], \text { so we get }

 

uy=U[1h3(1h2yh2)(12n+1h1h)]\frac{\partial u}{\partial y}=U\left[-\frac{1}{h}-3\left(\frac{1}{h}-\frac{2 y}{h^{2}}\right)\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right]

 

τs=μU[1h+3h(12nh1)]\therefore \quad \tau_{s}=-\mu U\left[-\frac{1}{h}+\frac{3}{h}\left(1-\frac{2}{n} \cdot h_{1}\right)\right]

 

=μU[2h+6n+1h1h2]=\mu U\left[-\frac{2}{h}+\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right]

 

Also, h=h1(h1h2)xLh=h_{1}-\left(h_{1}-h_{2}\right) \frac{x}{L}

 

dh=h1h2Ldx\therefore \quad d h=-\frac{h_{1}-h_{2}}{L} d x

 

Thus, 0Lτsdx=Lh1h2h2h1τsdh\int_{0}^{L} \tau_{s} d x=\frac{L}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}} \tau_{s} d h

 

=μLUh1h2h2h1(2h+6n+1h1h2)dh=\frac{\mu L U}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}}\left(-\frac{2}{h}+\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right) d h

 

=μULh1h2(2lnh6n+1h1h)h2h1=\frac{\mu U L}{h_{1}-h_{2}}\left(-2 \ln h-\frac{6}{n+1} \cdot \frac{h_{1}}{h}\right)_{h_{2}}^{h_{1}}

 

=μULh2(n1)[2lnn6h1n+1(1h11h2)]=\frac{\mu U L}{h_{2}(n-1)}\left[-2 \ln n-\frac{6 h_{1}}{n+1}\left(\frac{1}{h_{1}}-\frac{1}{h_{2}}\right)\right]

 

=μULh2(n1)[2lnn+6(n1)n+1]=\frac{\mu U L}{h_{2}(n-1)}\left[-2 \ln n+\frac{6(n-1)}{n+1}\right]

 

Also, load P=0L(pp0)dxcosαcosα (neglecting contribution of τs to load; α is small) P=\int_{0}^{L}\left(p-p_{0}\right) \frac{ d x \cos \alpha}{\cos \alpha} \quad \begin{array}{l}\text { (neglecting contribution of } \\\tau_{s} \text { to load; } \alpha \text { is small) }\end{array}

 

∴ Fs=0Lτsdx+tanα(P)F_{s}=\int_{0}^{L} \tau_{s} d x+\tan \alpha(P)

 

or Fs=0Lτsdx+tanα(P)F_{s}=\int_{0}^{L} \tau_{s} d x+\tan \alpha(P)Fs=μULh2(n1)(2lnn+6(n1)n+1)+[h1h2L]×F_{s}=\frac{\mu U L}{h_{2}(n-1)}\left(-2 \ln n+\frac{6(n-1)}{n+1}\right)+\left[\frac{h_{1}-h_{2}}{L}\right] \times

 

6μUL2h22(n1)2(lnn2(n1)n+1)\frac{6 \mu U L^{2}}{h_{2}^{2}(n-1)^{2}}\left(\ln n-\frac{2(n-1)}{n+1}\right)

 

=μULh2(n1)(4lnn6(n1)n+1)=\frac{\mu U L}{h_{2}(n-1)}\left(4 \ln n-\frac{6(n-1)}{n+1}\right)

 

Now the force on the guide is

 

FG=0LτGdxF_{G}=\int_{0}^{L} \tau_{G} d x

 

But τG=μ(uy)y=0\tau_{G}=-\mu\left(\frac{\partial u}{\partial y}\right)_{y=0}

 

=μU[1h+3h(12n+1h1h)]=\mu U\left[\frac{1}{h}+\frac{3}{h}\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right]

 

The expression is τG=μU[4h6n+1h1h2]\tau_{G}=\mu U\left[\frac{4}{h}-\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right]

 

∴ FG=0LτGdxF_{G}=\int_{0}^{L} \tau_{G} d x

 

=Lh1h2h2h1τGdh=\frac{L}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}} \tau_{G} d h (as before)

 

=μULh2(n1)h2h1(4h6n+1h1h2)dh=\frac{\mu U L}{h_{2}(n-1)} \int_{h_{2}}^{h_{1}}\left(\frac{4}{h}-\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right) d h

 

=μULh2(n1)[4lnn+6h1n+1(1h11h2)]=\frac{\mu U L}{h_{2}(n-1)}\left[4 \ln n+\frac{6 h_{1}}{n+1}\left(\frac{1}{h_{1}}-\frac{1}{h_{2}}\right)\right]

 

=μULh2(n1)[4lnn6(n1)n+1]=\frac{\mu U L}{h_{2}(n-1)}\left[4 \ln n-\frac{6(n-1)}{n+1}\right]

 

which is the same as FsF_{s}.

Related Answered Questions